Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China.
Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400010, People's Republic of China.
J Nanobiotechnology. 2023 May 24;21(1):165. doi: 10.1186/s12951-023-01932-0.
Oxidative stress (OS) induced by an imbalance of oxidants and antioxidants is an important aspect in anticancer therapy, however, as an adaptive response, excessive glutathione (GSH) in the tumor microenvironment (TME) acts as an antioxidant against high reactive oxygen species (ROS) levels and prevents OS damage to maintain redox homoeostasis, suppressing the clinical efficacy of OS-induced anticancer therapies.
A naturally occurring ROS-activating drug, galangin (GAL), is introduced into a Fenton-like catalyst (SiO@MnO) to form a TME stimulus-responsive hybrid nanopharmaceutical (SiO-GAL@MnO, denoted SG@M) for enhancing oxidative stress. Once exposed to TME, as MnO responds and consumes GSH, the released Mn converts endogenous hydrogen peroxide (HO) into hydroxyl radicals (·OH), which together with the subsequent release of GAL from SiO increases ROS. The "overwhelming" ROS cause OS-mediated mitochondrial malfunction with a decrease in mitochondrial membrane potential (MMP), which releases cytochrome c from mitochondria, activates the Caspase 9/Caspase 3 apoptotic cascade pathway. Downregulation of JAK2 and STAT3 phosphorylation levels blocks the JAK2/STAT3 cell proliferation pathway, whereas downregulation of Cyclin B1 protein levels arrest the cell cycle in the G2/M phase. During 18 days of in vivo treatment observation, tumor growth inhibition was found to be 62.7%, inhibiting the progression of pancreatic cancer. Additionally, the O and Mn released during this cascade catalytic effect improve ultrasound imaging (USI) and magnetic resonance imaging (MRI), respectively.
This hybrid nanopharmaceutical based on oxidative stress amplification provides a strategy for multifunctional integrated therapy of malignant tumors and image-visualized pharmaceutical delivery.
氧化应激(OS)是由氧化剂和抗氧化剂失衡引起的,是癌症治疗的一个重要方面。然而,作为一种适应性反应,肿瘤微环境(TME)中过多的谷胱甘肽(GSH)充当抗氧化剂,对抗高活性氧(ROS)水平,防止 OS 损伤以维持氧化还原平衡,从而抑制 OS 诱导的抗癌治疗的临床疗效。
引入一种天然存在的 ROS 激活药物白杨素(GAL)到 Fenton 样催化剂(SiO@MnO)中,形成一种 TME 刺激响应性杂化纳米药物(SiO-GAL@MnO,记为 SG@M),以增强氧化应激。一旦暴露于 TME 中,MnO 响应并消耗 GSH,释放的 Mn 将内源性过氧化氢(HO)转化为羟基自由基(·OH),随后 SG@M 从 SiO 中释放出 GAL,进一步增加 ROS。“压倒性”的 ROS 导致 OS 介导的线粒体功能障碍,线粒体膜电位(MMP)降低,细胞色素 c 从线粒体中释放出来,激活 Caspase 9/Caspase 3 凋亡级联途径。下调 JAK2 和 STAT3 磷酸化水平阻断了 JAK2/STAT3 细胞增殖途径,而下调 Cyclin B1 蛋白水平则使细胞周期停滞在 G2/M 期。在 18 天的体内治疗观察中,发现肿瘤生长抑制率为 62.7%,抑制了胰腺癌的进展。此外,在这个级联催化作用中释放的 O 和 Mn 分别改善了超声成像(USI)和磁共振成像(MRI)。
这种基于氧化应激放大的杂化纳米药物为恶性肿瘤的多功能综合治疗和图像可视化药物输送提供了一种策略。