REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
IFIMUP - Instituto de Física de Materiais Avançados, Nanotecnologia e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
Dalton Trans. 2021 Jul 27;50(29):9983-10013. doi: 10.1039/d1dt01568k.
The worldwide energy scarcity arising from the massive consumption of nonrenewable energy sources raised a global awareness of the need for cleaner and affordable energy solutions to mitigate climate change and ensure the world sustainable development. The rise of the Internet of Things and the fast growth of the groundbreaking market of wearable electronics boosted a major quest for self-powered technologies merging energy harvesting and energy storage functionalities to meet the demands of a myriad of market segments, such as healthcare, transportation, defense and sports. Thermoelectric devices are a green energy harvesting solution for wearable electronics since they harness the low-grade waste heat from ubiquitous thermal energy sources and convert it into electrical energy. However, these systems generate electrical energy in an intermittent manner, depend on the local heat release availability and require an additional unit to store energy. Flexible and wearable supercapacitors are a safe and eco-friendly energy storage solution to power wearables, offering advantages of security, longer cycle life, higher power density and faster charging over batteries. However, an additional unit that generates energy or that is able to charge the storage device is required. More recently, a new class of all-in-one thermally-chargeable supercapacitors blossomed to meet the requirements of the next generation of autonomous wearable electronics and ensure an endurable energy supply. This self-chargeable hybrid technology combines the functionalities of thermal energy harvesting and supercapacitive energy storage in a single multitasking device. In this Perspective, the advances in the burgeoning field of all-in-one thermally-chargeable supercapacitors for flexible/wearable applications will be critically examined, ranging from their structure and working principle to the rational design of the composing materials and of tailor-made architectures. It will start by introducing the foundations of single flexible/wearable thermoelectric generators and supercapacitors and will evolve into the pioneering venture of fully-integrated thermal energy harvesting/storage systems. It will end by highlighting the current bottlenecks and future pathways for advancing the development of this sophisticated smart technology.
由于不可再生能源的大量消耗而导致的全球能源短缺,使人们普遍意识到需要更清洁、更经济的能源解决方案,以减轻气候变化的影响,确保世界的可持续发展。物联网的兴起和突破性的可穿戴电子市场的快速增长,推动了人们对自供电技术的强烈追求,这种技术将能量收集和能量存储功能融合在一起,以满足医疗保健、交通、国防和体育等众多市场领域的需求。热电设备是可穿戴电子设备的绿色能量收集解决方案,因为它们可以利用无处不在的热能源中的低品位废热,并将其转化为电能。然而,这些系统以间歇性的方式产生电能,依赖于局部热量释放的可用性,并且需要额外的单元来存储能量。灵活可穿戴的超级电容器是为可穿戴设备提供动力的安全且环保的能量存储解决方案,具有安全性高、循环寿命长、功率密度高、充电速度快等优点,优于电池。然而,需要额外的单元来产生能量或为存储设备充电。最近,一类新的一体式可热充电超级电容器应运而生,以满足下一代自主可穿戴电子设备的要求,并确保持久的能源供应。这种自充电混合技术将热能收集和超级电容储能的功能集成在一个单一的多功能设备中。在这篇观点文章中,将批判性地研究新兴的一体式可热充电超级电容器在灵活/可穿戴应用中的进展,范围从其结构和工作原理到组成材料的合理设计和定制架构。它将从介绍单个灵活/可穿戴的热电发电机和超级电容器的基础开始,然后发展到全集成的热能收集/存储系统的开创性研究。最后,将强调该复杂智能技术发展的当前瓶颈和未来方向。