Wang Xiaoxiao, Deng Nanping, Wei Liying, Yang Qi, Xiang Hengying, Wang Meng, Cheng Bowen, Kang Weimin
State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, P. R. China.
School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.
Chem Asian J. 2021 Oct 4;16(19):2852-2870. doi: 10.1002/asia.202100765. Epub 2021 Aug 19.
Lithium-sulfur (Li-S) batteries, possessing excellent theoretical capacities, low cost and nontoxicity, are one of the most promising energy storage battery systems. However, poor conductivity of elemental S and the "shuttle effect" of lithium polysulfides hinder the commercialization of Li-S batteries. These problems are closely related to the interface problems between the cathodes, separators/electrolytes and anodes. The review focuses on interface issues for advanced separators/electrolytes based on nanomaterials in Li-S batteries. In the liquid electrolyte systems, electrolytes/separators and electrodes system can be decorated by nano materials coating for separators and electrospinning nanofiber separators. And, interface of anodes and electrolytes/separators can be modified by nano surface coating, nano composite metal lithium and lithium nano alloy, while the interface between cathodes and electrolytes/separators is designed by nano metal sulfide, nanocarbon-based and other nano materials. In all solid-state electrolyte systems, the focus is to increase the ionic conductivity of the solid electrolytes and reduce the resistance in the cathode/polymer electrolyte and Li/electrolyte interfaces through using nanomaterials. The basic mechanism of these interface problems and the corresponding electrochemical performance are discussed. Based on the most critical factors of the interfaces, we provide some insights on nanomaterials in high-performance liquid or state Li-S batteries in the future.
锂硫(Li-S)电池具有优异的理论容量、低成本和无毒等特性,是最具前景的储能电池系统之一。然而,单质硫的导电性差以及多硫化锂的“穿梭效应”阻碍了锂硫电池的商业化进程。这些问题与阴极、隔膜/电解质和阳极之间的界面问题密切相关。本文综述聚焦于锂硫电池中基于纳米材料的先进隔膜/电解质的界面问题。在液体电解质体系中,电解质/隔膜和电极体系可通过隔膜的纳米材料涂层和电纺纳米纤维隔膜进行修饰。并且,阳极与电解质/隔膜的界面可通过纳米表面涂层、纳米复合金属锂和锂纳米合金进行改性,而阴极与电解质/隔膜之间的界面则由纳米金属硫化物、碳基纳米材料及其他纳米材料设计而成。在全固态电解质体系中,重点是通过使用纳米材料提高固体电解质的离子电导率,并降低阴极/聚合物电解质和锂/电解质界面的电阻。文中讨论了这些界面问题的基本机制以及相应的电化学性能。基于界面的最关键因素,我们对未来高性能液体或固态锂硫电池中的纳米材料提供了一些见解。