Suppr超能文献

电动汽车电池的改进综述。

A review of improvements on electric vehicle battery.

作者信息

Koech Alex K, Mwandila Gershom, Mulolani Francis

机构信息

Chemical Engineering Department, School of Mines and Mineral Sciences, Copperbelt University, Zambia.

Copperbelt University Africa Centre of Excellence (CBU-ACESM), Zambia.

出版信息

Heliyon. 2024 Jul 25;10(15):e34806. doi: 10.1016/j.heliyon.2024.e34806. eCollection 2024 Aug 15.

Abstract

The development of efficient and high-performance electric vehicle (EV) batteries relies on improving various components, such as the anode and cathode electrodes, separators, and electrolytes. This review paper offers an elaborate overview of different materials for these components, emphasizing their respective contributions to the improvement of EV battery performance. Carbon-based materials, metal composites, and polymer nanocomposites are explored for the anode, offering high energy density and capacity. However, they are noted to be susceptible to Li plating. Unique structures, such as Titanium niobium oxide (TiNbO), offer high theoretical capacity, quick Li intercalation, and an extended lifecycle. Meanwhile, molybdenum disulfide (MoS), with 2D and 3D structures, exhibits high reversible specific capacity, outstanding rate performance, and cyclic stability, showing promising properties as anode material. For cathodes, lithium-iron phosphate (LFP), lithium-cobalt oxide (LCO), lithium-nickel-cobalt-aluminum oxide (NCA), lithium-nickel-manganese-cobalt oxide (NMC), and cobalt-free lithium-nickel-manganese oxide (NMO) are considered, offering specific energy and capacity advantages. For instance, LFP cathode electrodes show good thermal stability, good electrochemical performance, and long lifespan, while NMC exhibits high specific energy, relatively high capacity, and cost savings. NCA has a high specific energy, decent specific power, large capacity, and a long lifecycle. NMO shows excellent rate capability, cyclic stability, and cost-effectiveness but with limited cycle performance. Separator innovations, including polyolefin materials, nanofiber separators, graphene-based composites, and ceramic-polymer composites, are analyzed for use as separators, considering mechanical strength, porosity, wettability with the electrolyte, electrolytic absorption, cycling efficiency, and ionic conductivity. The electrolyte comprises lithium salts such as lithium tetrafluoroborate (LiBF), lithium hexafluorophosphate (LiPF), and other salts dissolved in carbonate solvents. This improves energy density, capacity, and cycling stability and provides high ion mobility and resistance to decomposition. By examining the existing literature, this review also explores research on the solid electrolyte interface (SEI) and lithium plating, providing valuable insights into understanding and mitigating these critical issues. Despite the progress, limitations such as practical implementation challenges, potential cost implications, and the need for further research on scale-up feasibility and long-term durability are acknowledged. These efforts to enhance the electrochemical characteristics of key battery parameters-positive and negative electrodes, separators, and electrolytes-aim to improve capacity, specific energy density, and overall energy density. These continuous endeavours strive for faster charging of EV batteries and longer travel ranges, contributing to the ongoing evolution of EV energy storage systems. Thus, this review paper not only explores remarkable strides in EV battery technology but also underscores the imperative of addressing challenges and propelling future research for sustainable and high-performance electric vehicle energy storage systems.

摘要

高效高性能电动汽车(EV)电池的发展依赖于改进各种组件,如阳极和阴极电极、隔膜和电解质。这篇综述文章详细概述了这些组件的不同材料,强调了它们对提高电动汽车电池性能的各自贡献。研究了用于阳极的碳基材料、金属复合材料和聚合物纳米复合材料,它们具有高能量密度和容量。然而,它们被指出容易发生锂镀层现象。独特的结构,如钛铌氧化物(TiNbO),具有高理论容量、快速锂嵌入和延长的生命周期。同时,具有二维和三维结构的二硫化钼(MoS)表现出高可逆比容量、出色的倍率性能和循环稳定性,显示出作为阳极材料的良好性能。对于阴极,考虑了磷酸铁锂(LFP)、钴酸锂(LCO)、镍钴铝酸锂(NCA)、镍锰钴酸锂(NMC)和无钴镍锰氧化物(NMO),它们具有特定的能量和容量优势。例如,LFP阴极电极具有良好的热稳定性、良好的电化学性能和长寿命,而NMC具有高比能量、相对较高的容量和成本节约。NCA具有高比能量、良好的比功率、大容量和长生命周期。NMO表现出出色的倍率性能、循环稳定性和成本效益,但循环性能有限。分析了包括聚烯烃材料、纳米纤维隔膜、石墨烯基复合材料和陶瓷 - 聚合物复合材料在内的隔膜创新材料,考虑了它们的机械强度、孔隙率、与电解质的润湿性、电解质吸收、循环效率和离子电导率。电解质包括锂盐,如四氟硼酸锂(LiBF)、六氟磷酸锂(LiPF)以及溶解在碳酸盐溶剂中的其他盐。这提高了能量密度、容量和循环稳定性,并提供了高离子迁移率和抗分解能力。通过研究现有文献,本综述还探讨了固体电解质界面(SEI)和锂镀层的研究,为理解和缓解这些关键问题提供了有价值的见解。尽管取得了进展,但仍认识到存在实际应用挑战、潜在成本影响以及需要进一步研究扩大规模的可行性和长期耐久性等局限性。这些旨在增强关键电池参数(正负极、隔膜和电解质)电化学特性的努力,旨在提高容量、比能量密度和整体能量密度。这些持续的努力致力于实现电动汽车电池更快充电和更长续航里程,推动电动汽车储能系统的不断发展。因此,这篇综述文章不仅探讨了电动汽车电池技术的显著进展,还强调了应对挑战和推动未来研究以实现可持续和高性能电动汽车储能系统的紧迫性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验