Tyagi Alekha, Sinha Prerna, Kar Kamal K, Yokoi Hiroyuki
Advanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India.
Advanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India; Advanced Nanoengineering Materials Laboratory, Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India.
J Colloid Interface Sci. 2021 Dec 15;604:227-238. doi: 10.1016/j.jcis.2021.07.020. Epub 2021 Jul 7.
Extensive research to explore cost-effective carbon materials as electrocatalysts and electrode materials for energy conversion and storage has been conducted in the recent literature. This raised a crucial question regarding the origin of this electrocatalytic activity from the heteroatom doping/ hierarchical porous defect-rich architecture and/ or the trace metal impurities introduced during synthesis/ inherent to the precursor. In this work, an insight into this issue is provided by considering a lignocellulosic biowaste, Euryale Ferox (foxnut) shells as a precursor to derive micro/ mesoporous defective graphitic carbon sheets by the phosphoric acid (HPO) dictated in-situ carbonization for oxygen reduction reaction (ORR) and supercapacitor applications. The sample synthesized at 900 °C (FP900) shows an onset potential of 0.98 V vs. reversible hydrogen electrode (RHE), ORR current density of 5.5 mA cm, and current stability of 93% (in 10 h measurement) in 0.1 M KOH. In addition, a symmetric supercapacitor device is assembled using the prepared material and the specific capacitance of 207.5 F g at 1 A g is obtained. An attempt to explain the origin of the electrochemical performance is made by establishing parallels with the physicochemical characterizations. The inherently doped heteroatoms give rise to electroactive functionalities and the wide enough pore size distribution improves the active sites utilization efficiency by enhancing the accessibility to electrolytic ions resulting in better electrochemical performance. Furthermore, the contribution from the intrinsic trace metal impurities is evaluated using X-ray fluorescence (XRF) spectroscopy. The presented research clarifies the non-contributing nature of trace metal species owing to the inaccessibility of active sites and lower abundance in F900 and FP900, respectively.
近期文献中已开展了广泛研究,以探索具有成本效益的碳材料作为用于能量转换和存储的电催化剂及电极材料。这引发了一个关键问题,即这种电催化活性的来源是杂原子掺杂/具有分级多孔缺陷丰富的结构,还是合成过程中引入的痕量金属杂质/前驱体固有的杂质。在这项工作中,通过将木质纤维素生物废料芡实壳作为前驱体,利用磷酸(H₃PO₄)控制的原位碳化法制备用于氧还原反应(ORR)和超级电容器应用的微/介孔缺陷石墨碳片,对这一问题进行了深入研究。在900℃合成的样品(FP900)在0.1M KOH中相对于可逆氢电极(RHE)的起始电位为0.98V,ORR电流密度为5.5mA/cm²,在10小时测量中的电流稳定性为93%。此外,使用制备的材料组装了对称超级电容器装置,在1A/g时获得了207.5F/g的比电容。通过与物理化学表征建立关联,试图解释电化学性能的来源。固有掺杂的杂原子产生了电活性官能团,足够宽的孔径分布通过增强对电解离子的可及性提高了活性位点的利用效率,从而带来更好的电化学性能。此外,使用X射线荧光(XRF)光谱评估了固有痕量金属杂质的贡献。所呈现的研究阐明了痕量金属物种的非贡献性质,这分别是由于F900和FP900中活性位点难以接近和丰度较低所致。