用于预测新鲜分散的纳米材料与中龄纳米材料对大型蚤急性毒性的生态毒理学读值模型。
Ecotoxicological read-across models for predicting acute toxicity of freshly dispersed versus medium-aged NMs to Daphnia magna.
机构信息
Nanoinformatics Department, NovaMechanics Ltd, Nicosia, Cyprus.
School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, UK.
出版信息
Chemosphere. 2021 Dec;285:131452. doi: 10.1016/j.chemosphere.2021.131452. Epub 2021 Jul 6.
Nanoinformatics models to predict the toxicity/ecotoxicity of nanomaterials (NMs) are urgently needed to support commercialization of nanotechnologies and allow grouping of NMs based on their physico-chemical and/or (eco)toxicological properties, to facilitate read-across of knowledge from data-rich NMs to data-poor ones. Here we present the first ecotoxicological read-across models for predicting NMs ecotoxicity, which were developed in accordance with ECHA's recommended strategy for grouping of NMs as a means to explore in silico the effects of a panel of freshly dispersed versus environmentally aged (in various media) Ag and TiO NMs on the freshwater zooplankton Daphnia magna, a keystone species used in regulatory testing. The dataset used to develop the models consisted of dose-response data from 11 NMs (5 TiO NMs of identical cores with different coatings, and 6 Ag NMs with different capping agents/coatings) each dispersed in three different media (a high hardness medium (HH Combo) and two representative river waters containing different amounts of natural organic matter (NOM) and having different ionic strengths), generated in accordance with the OECD 202 immobilization test. The experimental hypotheses being tested were (1) that the presence of NOM in the medium would reduce the toxicity of the NMs by forming an ecological corona, and (2) that environmental ageing of NMs reduces their toxicity compared to the freshly dispersed NMs irrespective of the medium composition (salt only or NOM-containing). As per the ECHA guidance, the NMs were grouped into two categories - freshly dispersed and 2-year-aged and explored in silico to identify the most important features driving the toxicity in each group. The final predictive models have been validated according to the OECD criteria and a QSAR model report form (QMRF) report included in the supplementary information to support adoption of the models for regulatory purposes.
迫切需要纳米信息学模型来预测纳米材料 (NMs) 的毒性/生态毒性,以支持纳米技术的商业化,并根据 NMs 的物理化学和/或(生态)毒性特性对其进行分组,以便从数据丰富的 NMs 到数据匮乏的 NMs 进行知识的同源类推。在这里,我们提出了第一个用于预测 NMs 生态毒性的生态毒理学类推模型,这些模型是根据 ECHA 推荐的 NMs 分组策略开发的,作为一种在计算机上探索一系列新鲜分散的和环境老化的(在各种介质中)Ag 和 TiO NMs 对淡水浮游动物大型蚤的影响的方法,大型蚤是用于监管测试的关键物种。用于开发模型的数据集由 11 种 NM(5 种具有不同涂层的相同核心的 TiO NM 和 6 种具有不同帽状试剂/涂层的 Ag NM)在三种不同介质(高硬度介质 (HH Combo) 和两种含有不同量天然有机物 (NOM) 的代表性河水,具有不同的离子强度)中分散产生的剂量反应数据组成,这些数据是根据 OECD 202 固定化试验生成的。正在测试的实验假设是:(1) 介质中 NOM 的存在会通过形成生态冠来降低 NM 的毒性,以及 (2) 无论介质组成(仅盐或含 NOM)如何,环境老化的 NM 会降低其毒性与新鲜分散的 NM 相比。根据 ECHA 指南,将 NM 分为两类 - 新鲜分散和 2 年老化,并在计算机上进行探索,以确定在每组中驱动毒性的最重要特征。最终预测模型已根据 OECD 标准进行验证,并在补充信息中包含 QSAR 模型报告表 (QMRF) 报告,以支持将这些模型用于监管目的。