Bondarenko Olesja M, Heinlaan Margit, Sihtmäe Mariliis, Ivask Angela, Kurvet Imbi, Joonas Elise, Jemec Anita, Mannerström Marika, Heinonen Tuula, Rekulapelly Rohit, Singh Shashi, Zou Jing, Pyykkö Ilmari, Drobne Damjana, Kahru Anne
a Laboratory of Environmental Toxicology , National Institute of Chemical Physics and Biophysics , Tallinn , Estonia .
b Faculty of Science and Technology , Institute of Ecology and Earth Sciences, Tartu University , Tartu , Estonia .
Nanotoxicology. 2016 Nov;10(9):1229-42. doi: 10.1080/17435390.2016.1196251. Epub 2016 Jun 28.
Within EU FP7 project NANOVALID, the (eco)toxicity of 7 well-characterized engineered nanomaterials (NMs) was evaluated by 15 bioassays in 4 laboratories. The highest tested nominal concentration of NMs was 100 mg/l. The panel of the bioassays yielded the following toxicity order: Ag > ZnO > CuO > TiO2 > MWCNTs > SiO2 > Au. Ag, ZnO and CuO proved very toxic in the majority of assays, assumingly due to dissolution. The latter was supported by the parallel analysis of the toxicity of respective soluble metal salts. The most sensitive tests/species were Daphnia magna (towards Ag NMs, 24-h EC50 = 0.003 mg Ag/l), algae Raphidocelis subcapitata (ZnO and CuO, 72-h EC50 = 0.14 mg Zn/l and 0.7 mg Cu/l, respectively) and murine fibroblasts BALB/3T3 (CuO, 48-h EC50 = 0.7 mg Cu/l). MWCNTs showed toxicity only towards rat alveolar macrophages (EC50 = 15.3 mg/l) assumingly due to high aspect ratio and TiO2 towards R. subcapitata (EC50 = 6.8 mg Ti/l) due to agglomeration of TiO2 and entrapment of algal cells. Finally, we constructed a decision tree to select the bioassays for hazard ranking of NMs. For NM testing, we recommend a multitrophic suite of 4 in vitro (eco)toxicity assays: 48-h D. magna immobilization (OECD202), 72-h R. subcapitata growth inhibition (OECD201), 30-min Vibrio fischeri bioluminescence inhibition (ISO2010) and 48-h murine fibroblast BALB/3T3 neutral red uptake in vitro (OECD129) representing crustaceans, algae, bacteria and mammalian cells, respectively. Notably, our results showed that these assays, standardized for toxicity evaluation of "regular" chemicals, proved efficient also for shortlisting of hazardous NMs. Additional assays are recommended for immunotoxicity evaluation of high aspect ratio NMs (such as MWCNTs).
在欧盟第七框架计划项目NANOVALID中,4个实验室通过15种生物测定法对7种特性明确的工程纳米材料(NM)的(生态)毒性进行了评估。纳米材料的最高测试标称浓度为100毫克/升。生物测定组得出以下毒性顺序:银>氧化锌>氧化铜>二氧化钛>多壁碳纳米管>二氧化硅>金。银、氧化锌和氧化铜在大多数测定中显示出剧毒,推测是由于溶解。相应可溶性金属盐毒性的平行分析支持了这一点。最敏感的测试/物种是大型溞(对银纳米材料,24小时半数有效浓度=0.003毫克银/升)、藻类纤细角毛藻(氧化锌和氧化铜,72小时半数有效浓度分别为0.14毫克锌/升和0.7毫克铜/升)和小鼠成纤维细胞BALB/3T3(氧化铜,48小时半数有效浓度=0.7毫克铜/升)。多壁碳纳米管仅对大鼠肺泡巨噬细胞显示出毒性(半数有效浓度=15.3毫克/升),推测是由于高长径比,而二氧化钛对纤细角毛藻显示出毒性(半数有效浓度=6.8毫克钛/升)是由于二氧化钛的团聚和藻类细胞的截留。最后,我们构建了一个决策树,以选择用于纳米材料危害分级的生物测定法。对于纳米材料测试,我们推荐一套由4种体外(生态)毒性测定法组成的多营养组:48小时大型溞固定试验(经合组织202)、72小时纤细角毛藻生长抑制试验(经合组织201)、30分钟费氏弧菌生物发光抑制试验(ISO2010)和48小时小鼠成纤维细胞BALB/3T3体外中性红摄取试验(经合组织129),分别代表甲壳类动物、藻类、细菌和哺乳动物细胞。值得注意的是,我们的结果表明,这些为“常规”化学品毒性评估而标准化的测定法,对筛选有害纳米材料也很有效。对于高长径比纳米材料(如多壁碳纳米管)的免疫毒性评估,建议进行额外的测定。