Biocomputing Unit, Centro Nacional de Biotecnología-CSIC, Madrid, Spain.
Department of Statistics, University of Oxford, Oxford, UK.
Commun Biol. 2021 Jul 15;4(1):874. doi: 10.1038/s42003-021-02399-1.
Cryo-EM maps are valuable sources of information for protein structure modeling. However, due to the loss of contrast at high frequencies, they generally need to be post-processed to improve their interpretability. Most popular approaches, based on global B-factor correction, suffer from limitations. For instance, they ignore the heterogeneity in the map local quality that reconstructions tend to exhibit. Aiming to overcome these problems, we present DeepEMhancer, a deep learning approach designed to perform automatic post-processing of cryo-EM maps. Trained on a dataset of pairs of experimental maps and maps sharpened using their respective atomic models, DeepEMhancer has learned how to post-process experimental maps performing masking-like and sharpening-like operations in a single step. DeepEMhancer was evaluated on a testing set of 20 different experimental maps, showing its ability to reduce noise levels and obtain more detailed versions of the experimental maps. Additionally, we illustrated the benefits of DeepEMhancer on the structure of the SARS-CoV-2 RNA polymerase.
冷冻电镜(Cryo-EM)图谱是蛋白质结构建模的重要信息来源。然而,由于高频对比度的损失,它们通常需要进行后处理以提高其可解释性。基于全局 B 因子校正的最流行方法存在局限性。例如,它们忽略了重构往往表现出的图谱局部质量的异质性。为了克服这些问题,我们提出了 DeepEMhancer,这是一种旨在对冷冻电镜图谱进行自动后处理的深度学习方法。在一个由实验图谱对和使用各自原子模型锐化的图谱组成的数据集上进行训练后,DeepEMhancer 已经学会了如何在单个步骤中执行掩蔽和锐化操作。我们在一个由 20 个不同实验图谱组成的测试集上评估了 DeepEMhancer,展示了它降低噪声水平和获得实验图谱更详细版本的能力。此外,我们还说明了 DeepEMhancer 在 SARS-CoV-2 RNA 聚合酶结构上的优势。