Center for Nutrition Research, University of Navarra, Pamplona, Spain.
Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
Int J Obes (Lond). 2021 Oct;45(10):2261-2268. doi: 10.1038/s41366-021-00904-4. Epub 2021 Jul 15.
Fecal microbiome disturbances are linked to different human diseases. In the case of obesity, gut microbiota seems to play a role in the development of low-grade inflammation. The purpose of the present study was to identify specific bacterial families and genera associated with an increased obesity-related inflammatory status, which would allow to build a regression model for the prediction of the inflammatory status of obese and overweight subjects based on fecal microorganisms.
A total of 361 volunteers from the Obekit trial (65 normal-weight, 110 overweight, and 186 obese) were classified according to four variables: waist/hip ratio (≥0.86 for women and ≥1.00 for men), leptin/adiponectin ratio (LAR, ≥3.0 for women and ≥1.4 for men), and plasma C-reactive protein (≥2 mg/L) and TNF levels (≥0.85 pg/mL). An inflammation score was designed to classify individuals in low (those subjects who did exceed the threshold value in 0 or 1 variable) or high inflammatory index (those subjects who did exceed the threshold value in 2 or more variables). Fecal 16 S rRNA sequencing was performed for all participants, and differential abundance analyses for family and genera were performed using the MicrobiomeAnalyst web-based platform.
Methanobacteriaceae, Christensenellaceae, Coriobacteriaceae, Bifidobacteriaceae, Catabacteriaceae, and Dehalobacteriaceae families, and Methanobrevibacter, Eggerthella, Gemmiger, Anaerostipes, and Collinsella genera were significantly overrepresented in subjects with low inflammatory index. Conversely, Carnobacteriaceae, Veillonellaceae, Pasteurellaceae, Prevotellaceae and Enterobacteriaceae families, and Granulicatella, Veillonella, Haemophilus, Dialister Parabacteroides, Prevotella, Shigella, and Allisonella genera were more abundant in subjects with a high inflammatory index. A regression model adjusted by BMI, sex, and age and including the families Coriobacteriaceae and Prevotellaceae and the genus Veillonella was developed.
A microbiota-based regression model was able to predict the obesity-related inflammatory status (area under the ROC curve = 0.8570 ± 0.0092 Harrell's optimism-correction) and could be useful in the precision management of inflammobesity.
粪便微生物组的紊乱与多种人类疾病有关。在肥胖的情况下,肠道微生物似乎在低度炎症的发展中发挥作用。本研究的目的是确定与肥胖相关的炎症状态增加相关的特定细菌科和属,这将允许根据粪便微生物构建一个用于预测肥胖和超重受试者炎症状态的回归模型。
根据四个变量(女性腰臀比≥0.86,男性≥1.00;女性瘦素/脂联素比(LAR)≥3.0,男性≥1.4;血浆 C 反应蛋白≥2mg/L 和 TNF 水平≥0.85pg/mL),对来自 Obekit 试验的 361 名志愿者(65 名体重正常、110 名超重和 186 名肥胖)进行分类。设计了一个炎症评分,将个体分为低炎症指数(仅在 0 或 1 个变量中超过阈值的受试者)或高炎症指数(在 2 个或更多变量中超过阈值的受试者)。对所有参与者进行粪便 16S rRNA 测序,并使用 MicrobiomeAnalyst 网络平台对科和属的差异丰度进行分析。
在低炎症指数个体中,甲烷杆菌科、克里斯滕森菌科、考里伯菌科、双歧杆菌科、猫杆菌科和脱硫杆菌科,以及甲烷短杆菌属、Eggerthella 属、Gemmiger 属、Anaerostipes 属和柯林斯氏菌属过度表达。相反,在高炎症指数个体中,甲烷杆菌科、韦荣氏球菌科、巴斯德氏菌科、普雷沃氏菌科和肠杆菌科,以及 Granulicatella 属、韦荣氏球菌属、嗜血杆菌属、 Dialister 属、拟杆菌属、普雷沃氏菌属、志贺氏菌属和 Allisonella 属丰度更高。建立了一个由 BMI、性别和年龄调整的包含科 Coriobacteriaceae 和 Prevotellaceae 以及属 Veillonella 的回归模型。
基于微生物组的回归模型能够预测肥胖相关的炎症状态(ROC 曲线下面积=0.8570±0.0092 Harrell 校正的优化),并可用于精准管理炎症性肥胖。