Department of Chemistry, Columbia University, New York, New York 10027, United States.
Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States.
ACS Chem Biol. 2021 Aug 20;16(8):1425-1434. doi: 10.1021/acschembio.1c00259. Epub 2021 Jul 16.
Developing treatments for antibiotic resistant bacterial infections is among the highest priority public health challenges worldwide. Tetracyclines, one of the most important classes of antibiotics, have fallen prey to antibiotic resistance, necessitating the generation of new analogs. Many tetracycline analogs have been accessed through both total synthesis and semisynthesis, but key C-ring tetracycline analogs remain inaccessible. New methods are needed to unlock access to these analogs, and heterologous biosynthesis in a tractable host such as is a candidate method. C-ring analog biosynthesis can mimic nature's biosynthesis of tetracyclines from anhydrotetracyclines, but challenges exist, including the absence of the unique cofactor F in common heterologous hosts. Toward this goal, this paper describes the biosynthesis of tetracycline from anhydrotetracycline in heterologously expressing three enzymes from three bacterial hosts: the anhydrotetracycline hydroxylase OxyS, the dehydrotetracycline reductase CtcM, and the F reductase FNO. This biosynthesis of tetracycline is enabled by OxyS performing just one hydroxylation step in despite its previous characterization as a double hydroxylase. This single hydroxylation enabled us to purify and structurally characterize a hypothetical intermediate in oxytetracycline biosynthesis that can explain structural differences between oxytetracycline and chlortetracycline. We show that F, a synthetically accessible derivative of cofactor F, can replace F in tetracycline biosynthesis. Critically, the use of for the final steps of tetracycline biosynthesis described herein sets the stage to achieve a total biosynthesis of tetracycline as well as novel tetracycline analogs in with the potential to combat antibiotic-resistant bacteria.
开发治疗抗生素耐药细菌感染的方法是全球公共卫生的当务之急。四环素类抗生素是最重要的抗生素之一,但已对其产生抗药性,因此需要开发新的类似物。许多四环素类似物已通过全合成和半合成获得,但关键的 C 环四环素类似物仍无法获得。需要新的方法来解锁这些类似物的合成途径,而在可转化宿主如 中进行异源生物合成是一种候选方法。C 环类似物的生物合成可以模拟自然界从脱水四环素类抗生素生物合成四环素类抗生素的过程,但存在一些挑战,包括在常见的异源宿主中缺乏独特的辅因子 F。为此,本文描述了在异源表达来自三个细菌宿主的三种酶的 中,从脱水四环素生物合成四环素的过程:脱水四环素羟化酶 OxyS、脱氢四环素还原酶 CtcM 和 F 还原酶 FNO。尽管 OxyS 之前被表征为双羟化酶,但它在 中仅进行一个羟化步骤,从而实现了四环素的生物合成。这一单一羟化作用使我们能够纯化和结构表征在氧四环素生物合成中的一个假设中间产物,该中间产物可以解释氧四环素和金霉素之间的结构差异。我们表明,F,一种辅因子 F 的合成可及衍生物,可以在四环素生物合成中替代 F。关键的是,本文所述在 中进行的四环素生物合成的最后几步,为在 中实现四环素的全生物合成以及新型四环素类似物的合成奠定了基础,这些类似物具有对抗抗生素耐药细菌的潜力。