Suppr超能文献

在酵母中完成大麻素及其非天然类似物的全生物合成。

Complete biosynthesis of cannabinoids and their unnatural analogues in yeast.

机构信息

California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA.

Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.

出版信息

Nature. 2019 Mar;567(7746):123-126. doi: 10.1038/s41586-019-0978-9. Epub 2019 Feb 27.

Abstract

Cannabis sativa L. has been cultivated and used around the globe for its medicinal properties for millennia. Some cannabinoids, the hallmark constituents of Cannabis, and their analogues have been investigated extensively for their potential medical applications. Certain cannabinoid formulations have been approved as prescription drugs in several countries for the treatment of a range of human ailments. However, the study and medicinal use of cannabinoids has been hampered by the legal scheduling of Cannabis, the low in planta abundances of nearly all of the dozens of known cannabinoids, and their structural complexity, which limits bulk chemical synthesis. Here we report the complete biosynthesis of the major cannabinoids cannabigerolic acid, Δ-tetrahydrocannabinolic acid, cannabidiolic acid, Δ-tetrahydrocannabivarinic acid and cannabidivarinic acid in Saccharomyces cerevisiae, from the simple sugar galactose. To accomplish this, we engineered the native mevalonate pathway to provide a high flux of geranyl pyrophosphate and introduced a heterologous, multi-organism-derived hexanoyl-CoA biosynthetic pathway. We also introduced the Cannabis genes that encode the enzymes involved in the biosynthesis of olivetolic acid, as well as the gene for a previously undiscovered enzyme with geranylpyrophosphate:olivetolate geranyltransferase activity and the genes for corresponding cannabinoid synthases. Furthermore, we established a biosynthetic approach that harnessed the promiscuity of several pathway genes to produce cannabinoid analogues. Feeding different fatty acids to our engineered strains yielded cannabinoid analogues with modifications in the part of the molecule that is known to alter receptor binding affinity and potency. We also demonstrated that our biological system could be complemented by simple synthetic chemistry to further expand the accessible chemical space. Our work presents a platform for the production of natural and unnatural cannabinoids that will allow for more rigorous study of these compounds and could be used in the development of treatments for a variety of human health problems.

摘要

大麻植物已经在全球范围内被种植和使用了几千年,因为它具有药用特性。一些大麻素,大麻的标志性成分及其类似物,因其潜在的医疗应用而被广泛研究。某些大麻素配方已在几个国家被批准为处方药,用于治疗一系列人类疾病。然而,由于大麻的法律分类、几乎所有已知大麻素的植物内丰度都很低以及它们的结构复杂性限制了大规模的化学合成,大麻素的研究和药用受到了阻碍。在这里,我们报告了在酿酒酵母中,从简单的糖半乳糖出发,完全合成主要大麻素大麻萜酚酸、Δ-四氢大麻酚酸、大麻二酚酸、Δ-四氢大麻素酸和大麻二酚酸的过程。为了实现这一目标,我们对天然甲羟戊酸途径进行了工程改造,以提供高浓度的香叶基焦磷酸,并引入了一种异源的、多生物体衍生的己酰辅酶 A 生物合成途径。我们还引入了编码参与橄榄酸生物合成的酶的大麻基因,以及一种以前未发现的具有香叶基焦磷酸:橄榄酸香叶基转移酶活性的酶的基因和相应的大麻素合成酶的基因。此外,我们建立了一种生物合成方法,利用几种途径基因的混杂性来生产大麻素类似物。用不同的脂肪酸喂养我们的工程菌株,得到了在已知改变受体结合亲和力和效力的分子部分进行修饰的大麻素类似物。我们还证明,我们的生物系统可以通过简单的合成化学来补充,以进一步扩大可及的化学空间。我们的工作为天然和非天然大麻素的生产提供了一个平台,这将允许对这些化合物进行更严格的研究,并可用于开发治疗各种人类健康问题的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验