Suppr超能文献

评估专家知识对ICH M7(Q)SAR 预测的影响。专家评审是否仍然必要?

Assessing the impact of expert knowledge on ICH M7 (Q)SAR predictions. Is expert review still needed?

机构信息

US Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, 20993, USA.

US Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, 20993, USA.

出版信息

Regul Toxicol Pharmacol. 2021 Oct;125:105006. doi: 10.1016/j.yrtph.2021.105006. Epub 2021 Jul 14.

Abstract

The ICH M7 (R1) guideline recommends the use of complementary (Q)SAR models to assess the mutagenic potential of drug impurities as a state-of-the-art, high-throughput alternative to empirical testing. Additionally, it includes a provision for the application of expert knowledge to increase prediction confidence and resolve conflicting calls. Expert knowledge, which considers structural analogs and mechanisms of activity, has been valuable when models return an indeterminate (equivocal) result or no prediction (out-of-domain). A retrospective analysis of 1002 impurities evaluated in drug regulatory applications between April 2017 and March 2019 assessed the impact of expert review on (Q)SAR predictions. Expert knowledge overturned the default predictions for 26% of the impurities and resolved 91% of equivocal predictions and 75% of out-of-domain calls. Of the 261 overturned default predictions, 15% were upgraded to equivocal or positive and 79% were downgraded to equivocal or negative. Chemical classes with the most overturns were primary aromatic amines (46%), aldehydes (45%), Michael-reactive acceptors (37%), and non-primary alkyl halides (33%). Additionally, low confidence predictions were the most often overturned. Collectively, the results suggest that expert knowledge continues to play an important role in an ICH M7 (Q)SAR prediction workflow and triaging predictions based on chemical class and probability can improve (Q)SAR review efficiency.

摘要

ICH M7(R1)指南建议使用互补(Q)SAR 模型来评估药物杂质的致突变潜力,作为一种先进的高通量替代经验测试的方法。此外,它还包括应用专家知识来提高预测置信度和解决冲突性结果的规定。当模型返回不确定(可疑)结果或没有预测(域外)时,考虑结构类似物和作用机制的专家知识对于提高预测准确性非常有价值。对 2017 年 4 月至 2019 年 3 月期间在药物监管申请中评估的 1002 种杂质进行的回顾性分析,评估了专家审查对 (Q)SAR 预测的影响。专家知识推翻了默认预测的杂质占 26%,解决了 91%的可疑预测和 75%的域外结果。在 261 个被推翻的默认预测中,有 15%被升级为可疑或阳性,79%被降级为可疑或阴性。被推翻最多的化学类别是伯胺(46%)、醛(45%)、迈克尔反应受体(37%)和非伯卤代烷烃(33%)。此外,低置信度预测被推翻的频率最高。总的来说,这些结果表明,专家知识在 ICH M7(Q)SAR 预测工作流程中仍然发挥着重要作用,并且根据化学类别和概率对预测进行分类可以提高(Q)SAR 审查效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验