Suppr超能文献

基于计算机系统和专家知识的潜在致突变杂质的结构评估。

Use of in silico systems and expert knowledge for structure-based assessment of potentially mutagenic impurities.

机构信息

Bayer HealthCare, Investigational Toxicology, Müllerstr. 178, 13353 Berlin, Germany.

出版信息

Regul Toxicol Pharmacol. 2013 Oct;67(1):39-52. doi: 10.1016/j.yrtph.2013.05.001. Epub 2013 May 10.

Abstract

Genotoxicity hazard identification is part of the impurity qualification process for drug substances and products, the first step of which being the prediction of their potential DNA reactivity using in silico (quantitative) structure-activity relationship (Q)SAR models/systems. This white paper provides information relevant to the development of the draft harmonized tripartite guideline ICH M7 on potentially DNA-reactive/mutagenic impurities in pharmaceuticals and their application in practice. It explains relevant (Q)SAR methodologies as well as the added value of expert knowledge. Moreover, the predictive value of the different methodologies analyzed in two surveys conveyed in the US and European pharmaceutical industry is compared: most pharmaceutical companies used a rule-based expert system as their primary methodology, yielding negative predictivity values of ⩾78% in all participating companies. A further increase (>90%) was often achieved by an additional expert review and/or a second QSAR methodology. Also in the latter case, an expert review was mandatory, especially when conflicting results were obtained. Based on the available data, we concluded that a rule-based expert system complemented by either expert knowledge or a second (Q)SAR model is appropriate. A maximal transparency of the assessment process (e.g. methods, results, arguments of weight-of-evidence approach) achieved by e.g. data sharing initiatives and the use of standards for reporting will enable regulators to fully understand the results of the analysis. Overall, the procedures presented here for structure-based assessment are considered appropriate for regulatory submissions in the scope of ICH M7.

摘要

遗传毒性危害鉴定是药物物质和产品杂质鉴定过程的一部分,其第一步是使用计算机(定量)结构-活性关系(QSAR)模型/系统预测其潜在的 DNA 反应性。本白皮书提供了与制定 ICH M7 草案有关的信息,ICH M7 草案涉及药物中具有潜在 DNA 反应性/致突变性的杂质及其在实践中的应用。它解释了相关的(QSAR)方法以及专家知识的附加值。此外,还比较了在美国和欧洲制药行业进行的两项调查中分析的不同方法的预测值:大多数制药公司将基于规则的专家系统作为其主要方法,所有参与公司的阴性预测值均≥78%。通过额外的专家审查和/或第二种 QSAR 方法通常可以进一步提高(>90%)。在后一种情况下,也必须进行专家审查,特别是当得到相互矛盾的结果时。基于可用数据,我们得出的结论是,基于规则的专家系统辅以专家知识或第二种(QSAR)模型是合适的。通过例如数据共享倡议和使用报告标准来实现评估过程的最大透明度(例如方法、结果、证据权重方法的论据),将使监管机构能够充分理解分析结果。总体而言,这里提出的基于结构的评估程序被认为适用于 ICH M7 范围内的监管提交。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验