Suppr超能文献

贝叶斯卷积神经网络在儿科肺炎检测和诊断中的估计。

Bayesian convolutional neural network estimation for pediatric pneumonia detection and diagnosis.

机构信息

Federal University of Maranhão, Applied Computing Group - NCA, Av. dos Portugueses, 1996, Campus do Bacanga, São Luís, Maranhão 65080-805, Brazil.

Federal University of Maranhão, Applied Computing Group - NCA, Av. dos Portugueses, 1996, Campus do Bacanga, São Luís, Maranhão 65080-805, Brazil.

出版信息

Comput Methods Programs Biomed. 2021 Sep;208:106259. doi: 10.1016/j.cmpb.2021.106259. Epub 2021 Jul 7.

Abstract

BACKGROUND AND OBJECTIVES

Pneumonia is a disease that affects the lungs, making breathing difficult. Nowadays, pneumonia is the disease that kills the most children under the age of five in the world, and if no action is taken, pneumonia is estimated to kill 11 million children by the year 2030. Knowing that rapid and accurate diagnosis of pneumonia is a significant factor in reducing mortality, acceleration, or automation of the diagnostic process is highly desirable. The use of computational methods can decrease specialists' workload and even offer a second opinion, increasing the number of accurate diagnostics.

METHODS

This work proposes a method for constructing a specific convolutional neural network architecture to detect pneumonia and classify viral and bacterial types using Bayesian optimization from pre-trained networks.

RESULTS

The results obtained are promising, in the order of 0.964 accuracy for pneumonia detection and 0.957 accuracy for pneumonia type classification.

CONCLUSION

This research demonstrated the efficiency of CNN architecture estimation for detecting and diagnosing pneumonia using Bayesian optimization. The proposed network proved to have promising results, despite not using common preprocessing techniques such as histogram equalization and lung segmentation. This fact shows that the proposed method provides efficient and high-performance neural networks since image preprocessing is unnecessary.

摘要

背景和目的

肺炎是一种影响肺部的疾病,导致呼吸困难。如今,肺炎是全球 5 岁以下儿童死亡最多的疾病,如果不采取行动,预计到 2030 年肺炎将导致 1100 万名儿童死亡。鉴于快速准确地诊断肺炎是降低死亡率的重要因素,因此加速或自动化诊断过程是非常可取的。使用计算方法可以减轻专家的工作量,甚至提供第二个意见,从而提高准确诊断的数量。

方法

本工作提出了一种方法,用于构建特定的卷积神经网络架构,使用贝叶斯优化从预训练网络中检测肺炎并分类病毒和细菌类型。

结果

获得的结果很有希望,肺炎检测的准确率达到 0.964,肺炎类型分类的准确率达到 0.957。

结论

本研究证明了使用贝叶斯优化对 CNN 架构进行估计以检测和诊断肺炎的效率。尽管没有使用常见的预处理技术(如直方图均衡化和肺部分割),但所提出的网络证明了其具有有前途的结果。这一事实表明,所提出的方法提供了高效且高性能的神经网络,因为不需要图像预处理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验