深度学习与迁移学习在病理学中的应用。案例研究:基底细胞癌分类。

Deep learning with transfer learning in pathology. Case study: classification of basal cell carcinoma.

机构信息

Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, Romania;

出版信息

Rom J Morphol Embryol. 2021 Oct-Dec;62(4):1017-1028. doi: 10.47162/RJME.62.4.14.

Abstract

Establishing basal cell carcinoma (BCC) subtype is sometimes challenging for pathologists. Deep-learning (DL) algorithms are an emerging approach in image classification due to their performance, accompanied by a new concept - transfer learning, which implies replacing the final layers of a trained network and retraining it for a new task, while keeping the weights from the imported layers. A DL convolution-based software, capable of classifying 10 subtypes of BCC, was designed. Transfer learning from three general-purpose image classification networks (AlexNet, GoogLeNet, and ResNet-18) was used. Three pathologists independently labeled 2249 patches. Ninety percent of data was used for training and 10% for testing on 100 independent training sequences. Each of the resulted networks independently labeled the whole dataset. Mean and standard deviation (SD) accuracy (ACC) [%]∕sensitivity (SN) [%]∕specificity (SP) [%]∕area under the curve (AUC) for all the networks was 82.53±2.63∕72.52±3.63∕97.94±0.3/0.99. The software was validated on another 50-image dataset, and its results are comparable with the result of three pathologists in terms of agreement. All networks had similar classification accuracies, which demonstrated that they reached a maximum classification rate on the dataset. The software shows promising results, and with further development can be successfully used on histological images, assisting pathologists' diagnosis and teaching.

摘要

确立基底细胞癌(BCC)亚型有时对病理学家来说具有挑战性。深度学习(DL)算法由于其性能,在图像分类中是一种新兴方法,同时伴随着一个新概念 - 迁移学习,它意味着替换训练网络的最后几层,并对其进行重新训练以完成新任务,同时保留导入层的权重。设计了一种基于 DL 卷积的软件,能够对 BCC 的 10 种亚型进行分类。使用了三种通用图像分类网络(AlexNet、GoogLeNet 和 ResNet-18)的迁移学习。三位病理学家独立标记了 2249 个斑块。将 90%的数据用于 100 个独立训练序列中的训练,将 10%的数据用于测试。每个生成的网络都独立地标记整个数据集。所有网络的平均和标准偏差(SD)准确性(ACC)[%]∕敏感度(SN)[%]∕特异性(SP)[%]∕曲线下面积(AUC)分别为 82.53±2.63∕72.52±3.63∕97.94±0.3∕0.99。该软件在另一个 50 张图像数据集上进行了验证,其结果在一致性方面与三位病理学家的结果相当。所有网络的分类准确率相似,这表明它们在数据集上达到了最高的分类率。该软件显示出有前景的结果,并通过进一步的开发,可以成功地用于组织学图像,辅助病理学家的诊断和教学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08b0/9289702/173bd0026dab/RJME-62-4-1017-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索