Suppr超能文献

无师自通的放射影像半监督分类:一个不吝啬的老师。

Semi-supervised classification of radiology images with NoTeacher: A teacher that is not mean.

机构信息

Institute for Infocomm Research, Agency for Science Technology and Research (A*STAR), Singapore.

Institute for Infocomm Research, Agency for Science Technology and Research (A*STAR), Singapore; National University of Singapore, Singapore.

出版信息

Med Image Anal. 2021 Oct;73:102148. doi: 10.1016/j.media.2021.102148. Epub 2021 Jul 1.

Abstract

Deep learning models achieve strong performance for radiology image classification, but their practical application is bottlenecked by the need for large labeled training datasets. Semi-supervised learning (SSL) approaches leverage small labeled datasets alongside larger unlabeled datasets and offer potential for reducing labeling cost. In this work, we introduce NoTeacher, a novel consistency-based SSL framework which incorporates probabilistic graphical models. Unlike Mean Teacher which maintains a teacher network updated via a temporal ensemble, NoTeacher employs two independent networks, thereby eliminating the need for a teacher network. We demonstrate how NoTeacher can be customized to handle a range of challenges in radiology image classification. Specifically, we describe adaptations for scenarios with 2D and 3D inputs, with uni and multi-label classification, and with class distribution mismatch between labeled and unlabeled portions of the training data. In realistic empirical evaluations on three public benchmark datasets spanning the workhorse modalities of radiology (X-Ray, CT, MRI), we show that NoTeacher achieves over 90-95% of the fully supervised AUROC with less than 5-15% labeling budget. Further, NoTeacher outperforms established SSL methods with minimal hyperparameter tuning, and has implications as a principled and practical option for semi-supervised learning in radiology applications.

摘要

深度学习模型在放射学图像分类方面取得了优异的性能,但由于需要大量的标注训练数据集,其实际应用受到了限制。半监督学习(SSL)方法利用少量标注数据集和大量未标注数据集,为降低标注成本提供了可能。在这项工作中,我们引入了 NoTeacher,这是一种基于一致性的新颖 SSL 框架,它结合了概率图模型。与通过时间集成更新教师网络的 Mean Teacher 不同,NoTeacher 采用了两个独立的网络,从而无需教师网络。我们展示了如何定制 NoTeacher 以处理放射学图像分类中的一系列挑战。具体来说,我们描述了针对 2D 和 3D 输入、单标签和多标签分类以及标注和未标注训练数据部分之间的类别分布不匹配的场景的适应方法。在对跨越放射学主要模态(X 射线、CT、MRI)的三个公共基准数据集的实际实证评估中,我们表明,NoTeacher 在不到 5-15%的标注预算下,实现了超过 90-95%的完全监督 AUROC。此外,NoTeacher 在最小的超参数调整下优于现有的 SSL 方法,并且作为放射学应用中半监督学习的一种有原则和实用的选择具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验