Suppr超能文献

通过对象重绘实现半监督腹部多器官分割

Semi-supervised abdominal multi-organ segmentation by object-redrawing.

作者信息

Cho Min Jeong, Lee Jae Sung

机构信息

Interdisciplinary Program in Bioengineering, Seoul National University Graduate School, Seoul, South Korea.

Artificial Intelligence Institute, Seoul National University, Seoul, South Korea.

出版信息

Med Phys. 2024 Nov;51(11):8334-8347. doi: 10.1002/mp.17364. Epub 2024 Aug 21.

Abstract

BACKGROUND

Multi-organ segmentation is a critical task in medical imaging, with wide-ranging applications in both clinical practice and research. Accurate delineation of organs from high-resolution 3D medical images, such as CT scans, is essential for radiation therapy planning, enhancing treatment outcomes, and minimizing radiation toxicity risks. Additionally, it plays a pivotal role in quantitative image analysis, supporting various medical research studies. Despite its significance, manual segmentation of multiple organs from 3D images is labor-intensive and prone to low reproducibility due to high interoperator variability. Recent advancements in deep learning have led to several automated segmentation methods, yet many rely heavily on labeled data and human anatomy expertise.

PURPOSE

In this study, our primary objective is to address the limitations of existing semi-supervised learning (SSL) methods for abdominal multi-organ segmentation. We aim to introduce a novel SSL approach that leverages unlabeled data to enhance the performance of deep neural networks in segmenting abdominal organs. Specifically, we propose a method that incorporates a redrawing network into the segmentation process to correct errors and improve accuracy.

METHODS

Our proposed method comprises three interconnected neural networks: a segmentation network for image segmentation, a teacher network for consistency regularization, and a redrawing network for object redrawing. During training, the segmentation network undergoes two rounds of optimization: basic training and readjustment. We adopt the Mean-Teacher model as our baseline SSL approach, utilizing labeled and unlabeled data. However, recognizing significant errors in abdominal multi-organ segmentation using this method alone, we introduce the redrawing network to generate redrawn images based on CT scans, preserving original anatomical information. Our approach is grounded in the generative process hypothesis, encompassing segmentation, drawing, and assembling stages. Correct segmentation is crucial for generating accurate images. In the basic training phase, the segmentation network is trained using both labeled and unlabeled data, incorporating consistency learning to ensure consistent predictions before and after perturbations. The readjustment phase focuses on reducing segmentation errors by optimizing the segmentation network parameters based on the differences between redrawn and original CT images.

RESULTS

We evaluated our method using two publicly available datasets: the beyond the cranial vault (BTCV) segmentation dataset (training: 44, validation: 6) and the abdominal multi-organ segmentation (AMOS) challenge 2022 dataset (training:138, validation:16). Our results were compared with state-of-the-art SSL methods, including MT and dual-task consistency (DTC), using the Dice similarity coefficient (DSC) as an accuracy metric. On both datasets, our proposed SSL method consistently outperformed other methods, including supervised learning, achieving superior segmentation performance for various abdominal organs. These findings demonstrate the effectiveness of our approach, even with a limited number of labeled data.

CONCLUSIONS

Our novel semi-supervised learning approach for abdominal multi-organ segmentation addresses the challenges associated with this task. By integrating a redrawing network and leveraging unlabeled data, we achieve remarkable improvements in accuracy. Our method demonstrates superior performance compared to existing SSL and supervised learning methods. This approach holds great promise in enhancing the precision and efficiency of multi-organ segmentation in medical imaging applications.

摘要

背景

多器官分割是医学成像中的一项关键任务,在临床实践和研究中都有广泛应用。从高分辨率3D医学图像(如CT扫描)中准确勾勒出器官轮廓,对于放射治疗计划、提高治疗效果以及将放射毒性风险降至最低至关重要。此外,它在定量图像分析中也起着关键作用,为各种医学研究提供支持。尽管其意义重大,但从3D图像中手动分割多个器官既费力又因操作者之间的高变异性而容易出现低重复性。深度学习的最新进展带来了多种自动分割方法,但许多方法严重依赖标记数据和人体解剖学专业知识。

目的

在本研究中,我们的主要目标是解决现有半监督学习(SSL)方法在腹部多器官分割方面的局限性。我们旨在引入一种新颖的SSL方法,利用未标记数据来提高深度神经网络在分割腹部器官方面的性能。具体而言,我们提出一种将重绘网络纳入分割过程以纠正错误并提高准确性的方法。

方法

我们提出的方法由三个相互连接的神经网络组成:用于图像分割的分割网络、用于一致性正则化的教师网络和用于对象重绘的重绘网络。在训练过程中,分割网络要经过两轮优化:基础训练和调整。我们采用均值教师模型作为基线SSL方法,使用标记和未标记数据。然而,仅使用此方法识别腹部多器官分割中的重大错误时,我们引入重绘网络以基于CT扫描生成重绘图像,同时保留原始解剖信息。我们的方法基于生成过程假设,包括分割、绘制和组装阶段。正确的分割对于生成准确图像至关重要。在基础训练阶段,分割网络使用标记和未标记数据进行训练,纳入一致性学习以确保扰动前后预测一致。调整阶段专注于通过基于重绘和原始CT图像之间的差异优化分割网络参数来减少分割错误。

结果

我们使用两个公开可用的数据集评估了我们的方法:颅外(BTCV)分割数据集(训练集:44个,验证集:6个)和2022年腹部多器官分割(AMOS)挑战赛数据集(训练集:138个,验证集:16个)。我们的结果与包括均值教师(MT)和双任务一致性(DTC)在内的最新SSL方法进行了比较,使用骰子相似系数(DSC)作为准确性指标。在这两个数据集上,我们提出的SSL方法始终优于其他方法,包括监督学习方法,在各种腹部器官的分割性能方面表现出色。这些发现证明了我们方法的有效性,即使标记数据数量有限。

结论

我们用于腹部多器官分割的新颖半监督学习方法解决了与此任务相关的挑战。通过集成重绘网络并利用未标记数据,我们在准确性方面取得了显著提高。与现有的SSL和监督学习方法相比,我们的方法表现出卓越的性能。这种方法在提高医学成像应用中多器官分割的精度和效率方面具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验