Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
Cell Rep Methods. 2021 May 24;1(1):None. doi: 10.1016/j.crmeth.2021.100008.
The computational detection and exclusion of cellular doublets and/or multiplets is a cornerstone for the identification the true biological signals from single-cell RNA sequencing (scRNA-seq) data. Current methods do not sensitively identify both heterotypic and homotypic doublets and/or multiplets. Here, we describe a machine learning approach for doublet/multiplet detection utilizing VDJ-seq and/or CITE-seq data to predict their presence based on transcriptional features associated with identified hybrid droplets. This approach highlights the utility of leveraging multi-omic single-cell information for the generation of high-quality datasets. Our method has high sensitivity and specificity in inflammatory-cell-dominant scRNA-seq samples, thus presenting a powerful approach to ensuring high-quality scRNA-seq data.
细胞二聚体和/或多聚体的计算检测和排除是从单细胞 RNA 测序 (scRNA-seq) 数据中识别真正生物学信号的基石。目前的方法不能敏感地识别异质和同质的二聚体和/或多聚体。在这里,我们描述了一种利用 VDJ-seq 和/或 CITE-seq 数据进行二聚体/多聚体检测的机器学习方法,该方法基于与鉴定的杂交液滴相关的转录特征来预测其存在。这种方法突出了利用多组学单细胞信息来生成高质量数据集的效用。我们的方法在炎症细胞主导的 scRNA-seq 样本中具有高灵敏度和特异性,因此提供了一种确保高质量 scRNA-seq 数据的强大方法。