Suppr超能文献

双重风险:使用多组学分析进行 scRNA-seq 二聚体/多聚体检测。

Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling.

机构信息

Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.

Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

出版信息

Cell Rep Methods. 2021 May 24;1(1):None. doi: 10.1016/j.crmeth.2021.100008.

Abstract

The computational detection and exclusion of cellular doublets and/or multiplets is a cornerstone for the identification the true biological signals from single-cell RNA sequencing (scRNA-seq) data. Current methods do not sensitively identify both heterotypic and homotypic doublets and/or multiplets. Here, we describe a machine learning approach for doublet/multiplet detection utilizing VDJ-seq and/or CITE-seq data to predict their presence based on transcriptional features associated with identified hybrid droplets. This approach highlights the utility of leveraging multi-omic single-cell information for the generation of high-quality datasets. Our method has high sensitivity and specificity in inflammatory-cell-dominant scRNA-seq samples, thus presenting a powerful approach to ensuring high-quality scRNA-seq data.

摘要

细胞二聚体和/或多聚体的计算检测和排除是从单细胞 RNA 测序 (scRNA-seq) 数据中识别真正生物学信号的基石。目前的方法不能敏感地识别异质和同质的二聚体和/或多聚体。在这里,我们描述了一种利用 VDJ-seq 和/或 CITE-seq 数据进行二聚体/多聚体检测的机器学习方法,该方法基于与鉴定的杂交液滴相关的转录特征来预测其存在。这种方法突出了利用多组学单细胞信息来生成高质量数据集的效用。我们的方法在炎症细胞主导的 scRNA-seq 样本中具有高灵敏度和特异性,因此提供了一种确保高质量 scRNA-seq 数据的强大方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e642/9017132/53807e38bb5c/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验