Suppr超能文献

CITEViz:使用 R-Shiny 通过类似于流式细胞术的门控工作流程对 CITE-Seq 中的细胞群进行交互式分类。

CITEViz: interactively classify cell populations in CITE-Seq via a flow cytometry-like gating workflow using R-Shiny.

机构信息

Division of Oncologic Sciences, Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Pk. Rd., KR-HEM, Portland, OR, 97239, USA.

Earle A. Chiles Research Institute, Providence, Portland, OR, 97213, USA.

出版信息

BMC Bioinformatics. 2024 Apr 2;25(1):142. doi: 10.1186/s12859-024-05762-1.

Abstract

BACKGROUND

The rapid advancement of new genomic sequencing technology has enabled the development of multi-omic single-cell sequencing assays. These assays profile multiple modalities in the same cell and can often yield new insights not revealed with a single modality. For example, Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq) simultaneously profiles the RNA transcriptome and the surface protein expression. The surface protein markers in CITE-Seq can be used to identify cell populations similar to the iterative filtration process in flow cytometry, also called "gating", and is an essential step for downstream analyses and data interpretation. While several packages allow users to interactively gate cells, they often do not process multi-omic sequencing datasets and may require writing redundant code to specify gate boundaries. To streamline the gating process, we developed CITEViz which allows users to interactively gate cells in Seurat-processed CITE-Seq data. CITEViz can also visualize basic quality control (QC) metrics allowing for a rapid and holistic evaluation of CITE-Seq data.

RESULTS

We applied CITEViz to a peripheral blood mononuclear cell CITE-Seq dataset and gated for several major blood cell populations (CD14 monocytes, CD4 T cells, CD8 T cells, NK cells, B cells, and platelets) using canonical surface protein markers. The visualization features of CITEViz were used to investigate cellular heterogeneity in CD14 and CD16-expressing monocytes and to detect differential numbers of detected antibodies per patient donor. These results highlight the utility of CITEViz to enable the robust classification of single cell populations.

CONCLUSIONS

CITEViz is an R-Shiny app that standardizes the gating workflow in CITE-Seq data for efficient classification of cell populations. Its secondary function is to generate basic feature plots and QC figures specific to multi-omic data. The user interface and internal workflow of CITEViz uniquely work together to produce an organized workflow and sensible data structures for easy data retrieval. This package leverages the strengths of biologists and computational scientists to assess and analyze multi-omic single-cell datasets. In conclusion, CITEViz streamlines the flow cytometry gating workflow in CITE-Seq data to help facilitate novel hypothesis generation.

摘要

背景

新的基因组测序技术的快速发展使得多组学单细胞测序分析成为可能。这些分析方法可以在同一细胞中同时对多种模式进行分析,并且通常可以产生单种模式无法揭示的新见解。例如,通过测序对转录组和表位进行细胞索引(CITE-Seq)同时对 RNA 转录组和表面蛋白表达进行分析。CITE-Seq 中的表面蛋白标记物可用于识别类似于流式细胞术的迭代过滤过程的细胞群体,也称为“门控”,这是下游分析和数据解释的重要步骤。虽然有几个软件包允许用户交互式地对细胞进行门控,但它们通常不处理多组学测序数据集,并且可能需要编写冗余代码来指定门控边界。为了简化门控过程,我们开发了 CITEViz,它允许用户在 Seurat 处理的 CITE-Seq 数据中交互式地对细胞进行门控。CITEViz 还可以可视化基本的质量控制 (QC) 指标,从而可以快速全面地评估 CITE-Seq 数据。

结果

我们将 CITEViz 应用于外周血单核细胞 CITE-Seq 数据集,并使用经典的表面蛋白标记物对几种主要的血液细胞群体(CD14 单核细胞、CD4 T 细胞、CD8 T 细胞、NK 细胞、B 细胞和血小板)进行门控。CITEViz 的可视化功能用于研究 CD14 和 CD16 表达的单核细胞中的细胞异质性,并检测每个患者供体的检测抗体数量的差异。这些结果突出了 CITEViz 的实用性,可实现单细胞群体的稳健分类。

结论

CITEViz 是一个 R-Shiny 应用程序,它为 CITE-Seq 数据中的门控工作流程提供了标准化,以实现高效的细胞群体分类。它的次要功能是生成特定于多组学数据的基本特征图和 QC 图。CITEViz 的用户界面和内部工作流程独特地协同工作,以生成组织良好的工作流程和易于数据检索的数据结构。该软件包利用生物学家和计算科学家的优势来评估和分析多组学单细胞数据集。总之,CITEViz 简化了 CITE-Seq 数据中的流式细胞术门控工作流程,有助于促进新的假设生成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c30/10988918/d8071bc423a2/12859_2024_5762_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验