Suppr超能文献

基于自主振荡流的动态切应力和生化信号微流控发生器。

A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow.

机构信息

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China.

School of Biomedical Engineering, Dalian University of Technology, Dalian, P. R. China.

出版信息

Electrophoresis. 2021 Nov;42(21-22):2264-2272. doi: 10.1002/elps.202100128. Epub 2021 Jul 29.

Abstract

Biological cells in vivo typically reside in a dynamic flowing microenvironment with extensive biomechanical and biochemical cues varying in time and space. These dynamic biomechanical and biochemical signals together act to regulate cellular behaviors and functions. Microfluidic technology is an important experimental platform for mimicking extracellular flowing microenvironment in vitro. However, most existing microfluidic chips for generating dynamic shear stress and biochemical signals require expensive, large peripheral pumps and external control systems, unsuitable for being placed inside cell incubators to conduct cell biology experiments. This study has developed a microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow. Further, based on the lumped-parameter and distributed-parameter models of multiscale fluid dynamics, the oscillatory flow field and the concentration field of biochemical factors has been simulated at the cell culture region within the designed microfluidic chip. Using the constructed experimental system, the feasibility of the designed microfluidic chip has been validated by simulating biochemical factors with red dye. The simulation results demonstrate that dynamic shear stress and biochemical signals with adjustable period and amplitude can be generated at the cell culture chamber within the microfluidic chip. The amplitudes of dynamic shear stress and biochemical signals is proportional to the pressure difference and inversely proportional to the flow resistance, while their periods are correlated positively with the flow capacity and the flow resistance. The experimental results reveal the feasibility of the designed microfluidic chip. Conclusively, the proposed microfluidic generator based on autonomously oscillatory flow can generate dynamic shear stress and biochemical signals without peripheral pumps and external control systems. In addition to reducing the experimental cost, due to the tiny volume, it is beneficial to be integrated into cell incubators for cell biology experiments. Thus, the proposed microfluidic chip provides a novel experimental platform for cell biology investigations.

摘要

生物细胞在体内通常存在于一个动态流动的微环境中,其中广泛的生物力学和生化线索随时间和空间而变化。这些动态的生物力学和生化信号共同作用,调节细胞的行为和功能。微流控技术是体外模拟细胞外流动微环境的重要实验平台。然而,大多数现有的用于产生动态剪切力和生化信号的微流控芯片需要昂贵的、大型的外围泵和外部控制系统,不适合放置在细胞培养箱内进行细胞生物学实验。本研究开发了一种基于自主振荡流的动态剪切力和生化信号微流控发生器。进一步地,基于多尺度流体动力学的集中参数和分布参数模型,模拟了设计的微流控芯片内细胞培养区的振荡流场和生化因子的浓度场。使用所构建的实验系统,通过用红色染料模拟生化因子,验证了所设计的微流控芯片的可行性。模拟结果表明,在微流控芯片的细胞培养室内可以产生具有可调周期和振幅的动态剪切力和生化信号。动态剪切力和生化信号的幅度与压力差成正比,与流动阻力成反比,而其周期与流量和流动阻力成正比。实验结果揭示了所设计的微流控芯片的可行性。总之,所提出的基于自主振荡流的微流控发生器无需外围泵和外部控制系统即可产生动态剪切力和生化信号。除了降低实验成本外,由于体积小,有利于集成到细胞培养箱中进行细胞生物学实验。因此,所提出的微流控芯片为细胞生物学研究提供了一种新的实验平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验