Suppr超能文献

一种可推广、可调节的微流控平台,用于传递快速随时间变化的化学信号以探测单细胞反应动力学。

A generalizable, tunable microfluidic platform for delivering fast temporally varying chemical signals to probe single-cell response dynamics.

作者信息

Chingozha Loice, Zhan Mei, Zhu Cheng, Lu Hang

机构信息

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States.

出版信息

Anal Chem. 2014 Oct 21;86(20):10138-47. doi: 10.1021/ac5019843. Epub 2014 Oct 10.

Abstract

Understanding how biological systems transduce dynamic, soluble chemical cues into physiological processes requires robust experimental tools for generating diverse temporal chemical patterns. The advent of microfluidics has seen the development of platforms for rapid fluid exchange allowing ease of changes in the cellular microenvironment and precise cell handling. Rapid exchange is important for exposing systems to temporally varying signals. However, direct coupling of macroscale fluid flow with microstructures is potentially problematic due to the high shear stresses that inevitably add confounding mechanical perturbation effects to the biological system of interest. Here, we have devised a method of translating fast and precise macroscale flows to microscale flows using a monolithically integrated perforated membrane. We integrated a high-density cell trap array for nonadherent cells that are challenging to handle under flow conditions with a soluble chemical signal generator module. The platform enables fast and repeatable switching of stimulus and buffer at low shear stresses for quantitative live, single-cell fluorescent studies. This modular design allows facile integration of any cell-handling chip design with any chemical delivery module. We demonstrate the utility of this device by characterizing heterogeneity of oscillatory response for cells exposed to alternating Ca(2+) waveforms at various periodicities. This platform enables the analysis of cell responses to chemical perturbations at a single-cell resolution that is necessary in understanding signal transduction pathways.

摘要

要理解生物系统如何将动态的、可溶的化学信号转化为生理过程,需要强大的实验工具来生成多样的时间化学模式。微流控技术的出现促使了快速流体交换平台的发展,这种平台便于改变细胞微环境并能精确操控细胞。快速交换对于使系统暴露于随时间变化的信号至关重要。然而,由于高剪切应力会不可避免地给感兴趣的生物系统增添混杂的机械扰动效应,所以宏观尺度的流体流动与微观结构的直接耦合可能存在问题。在此,我们设计了一种方法,利用整体集成的多孔膜将快速精确的宏观尺度流动转换为微观尺度流动。我们将用于非贴壁细胞的高密度细胞捕获阵列与一个可溶化学信号发生器模块集成在一起,非贴壁细胞在流动条件下难以操控。该平台能够在低剪切应力下快速且可重复地切换刺激物和缓冲液,用于定量的活细胞单细胞荧光研究。这种模块化设计允许将任何细胞操控芯片设计与任何化学输送模块轻松集成。我们通过表征暴露于不同周期交替Ca(2+)波形的细胞振荡反应的异质性,展示了该装置的实用性。这个平台能够在单细胞分辨率下分析细胞对化学扰动的反应,这对于理解信号转导途径是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/4204904/0b71c69cc821/ac-2014-019843_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验