State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.
Department of Bionanoscience, Kavli Institute of Nanoscience, Delft, South-Holland, The Netherlands.
Biophys J. 2021 Aug 17;120(16):3283-3291. doi: 10.1016/j.bpj.2021.03.045. Epub 2021 Jul 17.
CpG islands recruit MLL1 via the CXXC domain to modulate chromatin structure and regulate gene expression. The amino acid motif of CXXC also plays a pivotal role in MLL1's structure and function and serves as a target for drug design. In addition, the CpG pattern in an island governs spatially dependent collaboration among CpGs in recruiting epigenetic enzymes. However, current studies using short DNA fragments cannot probe the dynamics of CXXC on long DNA with crowded CpG motifs. Here, we used single-molecule magnetic tweezers to examine the binding dynamics of MLL1's CXXC domain on a long DNA with a CpG island. The mechanical strand separation assay allows profiling of protein-DNA complexes and reports force-dependent unfolding times. Further design of a hairpin detector reveals the unfolding time of individual CXXC-CpG complexes. Finally, in a proof of concept we demonstrate the inhibiting effect of dimethyl fumarate on the CXXC-DNA complexes by measuring the dose response curve of the unfolding time. This demonstrates the potential feasibility of using single-molecule strand separation as a label-free detector in drug discovery and chemical biology.
CpG 岛通过CXXC 结构域招募 MLL1,以调节染色质结构并调节基因表达。CXXC 的氨基酸基序在 MLL1 的结构和功能中也起着关键作用,并可作为药物设计的靶点。此外,岛上的 CpG 模式控制着在募集表观遗传酶时空间依赖的 CpG 之间的协作。然而,目前使用短 DNA 片段的研究无法探测具有拥挤 CpG 基序的长 DNA 上 CXXC 的动态。在这里,我们使用单分子磁镊研究了 MLL1 的 CXXC 结构域在具有 CpG 岛的长 DNA 上的结合动力学。机械链分离测定法可对蛋白质-DNA 复合物进行分析,并报告依赖于力的解折叠时间。进一步设计发夹探测器揭示了单个 CXXC-CpG 复合物的解折叠时间。最后,在概念验证中,我们通过测量解折叠时间的剂量反应曲线,证明了富马酸二甲酯对 CXXC-DNA 复合物的抑制作用。这表明使用单分子链分离作为无标记检测器在药物发现和化学生物学中的潜在可行性。