Qiao Mingtao, Li Jiaxin, Chen Tiantian, He Xiaowei, Meng Meiyu, Lei Xingfeng, Wei Jian, Zhang Qiuyu
College of Materials Science and Engineering, Xi'an University of Architecture & Technology, Xian 710055, Shaanxi, PR China; School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shaanxi Key Laboratory of Nano-materials and Techanology, Xi'an University of Architecture & Technology, Xian 710055, Shaanxi, PR China.
College of Materials Science and Engineering, Xi'an University of Architecture & Technology, Xian 710055, Shaanxi, PR China.
J Colloid Interface Sci. 2021 Dec 15;604:616-623. doi: 10.1016/j.jcis.2021.07.017. Epub 2021 Jul 7.
High-performance microwave absorption absorbers play important roles in the fields of radar stealth, electromagnetic protection, and antenna technology. In this work, high aspect-ratio Ag nanowires were decorated with magnetic CoNi nanoparticles via a PVP-induced solvothermal method, and then amorphous Sn(OH)/SnO shells were introduced through an in-situ oxidative hydrolysis method, successfully preparing Ag-CoNi@Sn(OH)/SnO composites. The morphology and ingredient of composites were ascertained by SEM, TEM, XRD, EDX, and XPS. As Ag-CoNi nanocomposites are coated by Sn(OH)/SnO shells, the minimum reflection loss value is decreased from -31.7 dB (10.1 GHz) to -37.8 dB (6.4 GHz), and the maximum effective absorption bandwidth is extended from 3.9 GHz (10.3-14.2 GHz) to 5.8 GHz (10.7-16.5 GHz). Analyses of electromagnetic parameters reveal the possible mechanisms, involving surface plasma resonance, conductive loss, interfacial polarization, dipole polarization, exchange resonance, eddy current effect, multiple reflection and scattering. Thus, Ag nanowires modified with CoNi nanoparticles and amorphous Sn(OH)/SnO shells can effectively balance the impedance matching and attenuation capability. It is a new strategy to achieve broadband microwave absorbers.
高性能微波吸收体在雷达隐身、电磁防护和天线技术等领域发挥着重要作用。在本工作中,通过聚乙烯吡咯烷酮诱导的溶剂热法,用磁性钴镍纳米颗粒修饰高长径比的银纳米线,然后通过原位氧化水解法引入非晶态氢氧化锡/氧化锡壳层,成功制备了银-钴镍@氢氧化锡/氧化锡复合材料。通过扫描电子显微镜、透射电子显微镜、X射线衍射、能谱仪和X射线光电子能谱确定了复合材料的形貌和成分。由于银-钴镍纳米复合材料被氢氧化锡/氧化锡壳层包覆,最小反射损耗值从-31.7 dB(10.1 GHz)降至-37.8 dB(6.4 GHz),最大有效吸收带宽从3.9 GHz(10.3-14.2 GHz)扩展至5.8 GHz(10.7-16.5 GHz)。电磁参数分析揭示了可能的机制,包括表面等离子体共振、传导损耗、界面极化、偶极极化、交换共振、涡电流效应、多次反射和散射。因此,用钴镍纳米颗粒和非晶态氢氧化锡/氧化锡壳层修饰的银纳米线可以有效平衡阻抗匹配和衰减能力。这是实现宽带微波吸收体的一种新策略。