Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal.
Portuguese Military Academy, Rua Gomes Freire, 1169-203 Lisbon, Portugal.
Sensors (Basel). 2021 Jul 1;21(13):4520. doi: 10.3390/s21134520.
Facial recognition is a method of identifying or authenticating the identity of people through their faces. Nowadays, facial recognition systems that use multispectral images achieve better results than those that use only visible spectral band images. In this work, a novel architecture for facial recognition that uses multiple deep convolutional neural networks and multispectral images is proposed. A domain-specific transfer-learning methodology applied to a deep neural network pre-trained in RGB images is shown to generalize well to the multispectral domain. We also propose a skin detector module for forgery detection. Several experiments were planned to assess the performance of our methods. First, we evaluate the performance of the forgery detection module using face masks and coverings of different materials. A second study was carried out with the objective of tuning the parameters of our domain-specific transfer-learning methodology, in particular which layers of the pre-trained network should be retrained to obtain good adaptation to multispectral images. A third study was conducted to evaluate the performance of support vector machines (SVM) and k-nearest neighbor classifiers using the embeddings obtained from the trained neural network. Finally, we compare the proposed method with other state-of-the-art approaches. The experimental results show performance improvements in the Tufts and CASIA NIR-VIS 2.0 multispectral databases, with a rank-1 score of 99.7% and 99.8%, respectively.
人脸识别是一种通过人脸来识别或验证身份的方法。如今,使用多光谱图像的人脸识别系统比仅使用可见光谱带图像的系统取得了更好的效果。在这项工作中,提出了一种使用多个深度卷积神经网络和多光谱图像的人脸识别新架构。应用于在 RGB 图像中预训练的深度神经网络的特定领域迁移学习方法被证明可以很好地推广到多光谱域。我们还提出了一种用于伪造检测的皮肤检测模块。计划了几个实验来评估我们方法的性能。首先,我们使用不同材料的面罩和遮盖物评估伪造检测模块的性能。第二项研究旨在调整我们特定领域迁移学习方法的参数,特别是应该重新训练预训练网络的哪些层以获得对多光谱图像的良好适应。第三项研究旨在评估使用从训练有素的神经网络获得的嵌入来使用支持向量机(SVM)和 K-最近邻分类器的性能。最后,我们将提出的方法与其他最先进的方法进行了比较。实验结果表明,在塔夫茨和 CASIA NIR-VIS 2.0 多光谱数据库中的性能有所提高,分别达到了 99.7%和 99.8%的排名第一得分。