IEEE Trans Image Process. 2017 May;26(5):2079-2089. doi: 10.1109/TIP.2017.2651380. Epub 2017 Jan 10.
Heterogeneous face recognition is an important, yet challenging problem in face recognition community. It refers to matching a probe face image to a gallery of face images taken from alternate imaging modality. The major challenge of heterogeneous face recognition lies in the great discrepancies between different image modalities. Conventional face feature descriptors, e.g., local binary patterns, histogram of oriented gradients, and scale-invariant feature transform, are mostly designed in a handcrafted way and thus generally fail to extract the common discriminant information from the heterogeneous face images. In this paper, we propose a new feature descriptor called common encoding model for heterogeneous face recognition, which is able to capture common discriminant information, such that the large modality gap can be significantly reduced at the feature extraction stage. Specifically, we turn a face image into an encoded one with the encoding model learned from the training data, where the difference of the encoded heterogeneous face images of the same person can be minimized. Based on the encoded face images, we further develop a discriminant matching method to infer the hidden identity information of the cross-modality face images for enhanced recognition performance. The effectiveness of the proposed approach is demonstrated (on several public-domain face datasets) in two typical heterogeneous face recognition scenarios: matching NIR faces to VIS faces and matching sketches to photographs.
异质人脸识别是人脸识别领域的一个重要而具有挑战性的问题。它是指将探测人脸图像与取自不同成像模态的人脸图像库进行匹配。异质人脸识别的主要挑战在于不同图像模态之间存在很大的差异。传统的人脸特征描述符,例如局部二值模式、方向梯度直方图和尺度不变特征变换,主要是手工设计的,因此通常无法从异质人脸图像中提取共同的判别信息。在本文中,我们提出了一种称为异质人脸识别公共编码模型的新特征描述符,它能够捕获共同的判别信息,从而在特征提取阶段显著减少模态间隙。具体来说,我们使用从训练数据中学习到的编码模型将人脸图像转换为编码图像,其中同一人的编码异质人脸图像之间的差异可以最小化。基于编码的人脸图像,我们进一步开发了一种判别匹配方法,以推断跨模态人脸图像的隐藏身份信息,从而提高识别性能。该方法在两个典型的异质人脸识别场景(将近红外人脸图像与可见光人脸图像进行匹配,以及将草图与照片进行匹配)中的有效性得到了验证(在几个公共领域的人脸数据集上)。