Suppr超能文献

增强光照鲁棒人脸识别中的阴影抑制

Improving Shadow Suppression for Illumination Robust Face Recognition.

作者信息

Zhang Wuming, Zhao Xi, Morvan Jean-Marie, Chen Liming

出版信息

IEEE Trans Pattern Anal Mach Intell. 2019 Mar;41(3):611-624. doi: 10.1109/TPAMI.2018.2803179. Epub 2018 Feb 7.

Abstract

2D face analysis techniques, such as face landmarking, face recognition and face verification, are reasonably dependent on illumination conditions which are usually uncontrolled and unpredictable in the real world. The current massive data-driven approach, e.g., deep learning-based face recognition, requires a huge amount of labeled training face data that hardly cover the infinite lighting variations that can be encountered in real-life applications. An illumination robust preprocessing method thus remains a very interesting but also a significant challenge in reliable face analysis. In this paper we propose a novel model driven approach to improve lighting normalization of face images. Specifically, we propose to build the underlying reflectance model which characterizes interactions between skin surface, lighting source and camera sensor, and elaborate the formation of face color appearance. The proposed illumination processing pipeline enables generation of the Chromaticity Intrinsic Image (CII) in a log chromaticity space which is robust to illumination variations. Moreover, as an advantage over most prevailing methods, a photo-realistic color face image is subsequently reconstructed, which eliminates a wide variety of shadows whilst retaining the color information and identity details. Experimental results under different scenarios and using various face databases show the effectiveness of the proposed approach in dealing with lighting variations, including both soft and hard shadows, in face recognition.

摘要

二维人脸分析技术,如人脸特征点定位、人脸识别和人脸验证,在很大程度上依赖于光照条件,而在现实世界中,光照条件通常是无法控制和预测的。当前大量数据驱动的方法,例如基于深度学习的人脸识别,需要大量带标签的训练人脸数据,而这些数据很难涵盖现实生活应用中可能遇到的无限光照变化。因此,一种光照鲁棒的预处理方法在可靠的人脸分析中仍然是一个非常有趣但也极具挑战性的问题。在本文中,我们提出了一种新颖的模型驱动方法来改善人脸图像的光照归一化。具体而言,我们建议构建潜在的反射模型,该模型表征皮肤表面、光源和相机传感器之间的相互作用,并详细阐述人脸颜色外观的形成。所提出的光照处理管道能够在对数色度空间中生成色度固有图像(CII),该图像对光照变化具有鲁棒性。此外,与大多数主流方法相比,随后可以重建逼真的彩色人脸图像,该图像消除了各种阴影,同时保留了颜色信息和身份细节。在不同场景下使用各种人脸数据库进行的实验结果表明,所提出的方法在人脸识别中处理光照变化(包括软阴影和硬阴影)方面是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验