Industrial Technologies Division, Universidad Politecnica de Queretaro, El Marques 76240, Mexico.
Red de Investigación OAC Optimización, Automatización y Control, El Marques 76240, Mexico.
Sensors (Basel). 2021 Jul 1;21(13):4529. doi: 10.3390/s21134529.
The present research develops the parametric estimation of a second-order transfer function in its standard form, employing metaheuristic algorithms. For the estimation, the step response with a known amplitude is used. The main contribution of this research is a general method for obtaining a second-order transfer function for any order stable systems via metaheuristic algorithms. Additionally, the Final Value Theorem is used as a restriction to improve the velocity search. The tests show three advantages in using the method proposed in this work concerning similar research and the exact estimation method. The first advantage is that using the Final Value Theorem accelerates the convergence of the metaheuristic algorithms, reducing the error by up to 10 times in the first iterations. The second advantage is that, unlike the analytical method, it is unnecessary to estimate the type of damping that the system has. Finally, the proposed method is adapted to systems of different orders, managing to calculate second-order transfer functions equivalent to higher and lower orders. Response signals to the step of systems of an electrical, mechanical and electromechanical nature were used. In addition, tests were carried out with simulated signals and real signals to observe the behavior of the proposed method. In all cases, transfer functions were obtained to estimate the behavior of the system in a precise way before changes in the input. In all tests, it was shown that the use of the Final Value Theorem presents advantages compared to the use of algorithms without restrictions. Finally, it was revealed that the Gray Wolf Algorithm has a better performance for parametric estimation compared to the Jaya algorithm with an error up to 50% lower.
本研究采用启发式算法对二阶传递函数进行标准形式的参数估计。对于估计,使用具有已知幅度的阶跃响应。本研究的主要贡献是通过启发式算法获得任何阶稳定系统二阶传递函数的通用方法。此外,还使用终值定理作为限制来改进速度搜索。测试表明,与类似的研究和精确估计方法相比,使用本工作中提出的方法有三个优点。第一个优点是,使用终值定理可以加速启发式算法的收敛,在前几次迭代中,误差可以减少多达 10 倍。第二个优点是,与解析方法不同,不需要估计系统的阻尼类型。最后,所提出的方法适用于不同阶数的系统,能够计算与更高和更低阶数等效的二阶传递函数。使用电气、机械和机电性质的系统的阶跃响应信号进行了测试。此外,还进行了模拟信号和真实信号的测试,以观察所提出方法的行为。在所有情况下,都获得了传递函数来准确估计系统在输入变化之前的行为。在所有测试中,都表明与没有限制的算法相比,使用终值定理具有优势。最后,结果表明与 Jaya 算法相比,灰狼算法在参数估计方面具有更好的性能,误差低至 50%。