Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, VIC 3216, Australia.
Aikenhead Centre for Medical Discovery, St. Vincent's Hospital Melbourne, Melbourne, VIC 3065, Australia.
ACS Biomater Sci Eng. 2021 Aug 9;7(8):3696-3708. doi: 10.1021/acsbiomaterials.1c00479. Epub 2021 Jul 20.
In the field of bionics, the long-term effectiveness of implantable bionic interfaces depends upon maintaining a "clean" and unfouled electrical interface with biological tissues. Lubricin (LUB) is an innately biocompatible glycoprotein with impressive antifouling properties. Unlike traditional antiadhesive coatings, LUB coatings do not passivate electrode surfaces, giving LUB coatings great potential for controlling surface fouling of implantable electrode interfaces. This study characterizes the antifouling properties of bovine native LUB (N-LUB), recombinant human LUB (R-LUB), hyaluronic acid (HA), and composite coatings of HA and R-LUB (HA/R-LUB) on gold electrodes against human primary fibroblasts and chondrocytes in passive and electrically stimulated environments for up to 96 h. R-LUB coatings demonstrated highly effective antifouling properties, preventing nearly all adhesion and proliferation of fibroblasts and chondrocytes even under biphasic electrical stimulation. N-LUB coatings, while showing efficacy in the short term, failed to produce sustained antifouling properties against fibroblasts or chondrocytes over longer periods of time. HA/R-LUB composite films also demonstrated highly effective antifouling performance equal to the R-LUB coatings in both passive and electrically stimulated environments. The high electrochemical stability and long-lasting antifouling properties of R-LUB and HA/R-LUB coatings in electrically stimulating environments reveal the potential of these coatings for controlling unwanted cell adhesion in implantable bionic applications.
在仿生学领域,可植入仿生界面的长期有效性取决于与生物组织保持“清洁”且无污垢的电界面。黏蛋白(LUB)是一种固有生物相容性的糖蛋白,具有令人印象深刻的抗污特性。与传统的抗粘附涂层不同,LUB 涂层不会使电极表面钝化,这使得 LUB 涂层在控制可植入电极界面的表面污垢方面具有很大的潜力。本研究在被动和电刺激环境下,将牛天然黏蛋白(N-LUB)、重组人黏蛋白(R-LUB)、透明质酸(HA)以及 HA 和 R-LUB 的复合涂层(HA/R-LUB)在金电极上对人原代成纤维细胞和软骨细胞进行长达 96 小时的抗污特性分析。R-LUB 涂层表现出高度有效的抗污特性,即使在双相电刺激下,也能阻止成纤维细胞和软骨细胞的几乎所有黏附和增殖。N-LUB 涂层虽然在短期内有效,但在较长时间内无法对成纤维细胞或软骨细胞产生持续的抗污特性。HA/R-LUB 复合膜在被动和电刺激环境中也表现出高度有效的抗污性能,与 R-LUB 涂层相当。R-LUB 和 HA/R-LUB 涂层在电刺激环境中具有高电化学稳定性和持久的抗污特性,这揭示了这些涂层在控制可植入仿生应用中不需要的细胞黏附方面的潜力。