Desroches Pauline E, Silva Saimon M, Gietman Shaun W, Quigley Anita F, Kapsa Robert M I, Moulton Simon E, Greene George W
Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, Victoria 3216, Australia.
BioFab3D@ACMD, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia.
ACS Appl Bio Mater. 2020 Nov 16;3(11):8032-8039. doi: 10.1021/acsabm.0c01109. Epub 2020 Nov 5.
Surface fouling is a major problem faced by bionic implants (e.g., cochlear implants, pacemakers), where the adsorption of unwanted biomolecules has a detrimental effect on interfacial charge transfer processes, which severely impairs their capacity to sense and transmit electrical signals with high fidelity. Polypyrrole (PPy) is a conductive polymer whose naturally high impedance, ionic and electric conductivity, mechanical "softness", and biocompatibility make it a leading candidate for next-generation neural electrode interfaces. However, PPy (and related conductive polymer) surfaces are susceptible to surface fouling upon exposure to biological fluids (e.g., blood, perilymph, saliva), which compromises performance and shortens its expected working lifespan. Here, we report the ability of lubricin (LUB) coatings, a rapidly self-assembling, biological antiadhesive glycoprotein, to mitigate the harmful electrochemical effects caused by the surface fouling of electrochemically grown PPy films. LUB, a biological antiadhesive glycoprotein, undergoes rapid self-assembly and adheres strongly to most interfaces, including PPy, resulting in an easy-to-apply and highly efficacious coating. The LUB-coated PPy electrodes are electrochemically characterized, and its antifouling properties are assessed against concentrated solutions of bovine serum albumin (BSA) and following long-term exposure to artificial perilymph (AP). Periodic impedance measurement conducted over 6 days in AP solution demonstrates the high stability and capacity of the LUB coatings to maintain stable impedance values under real-world mimicking conditions.
表面污染是仿生植入物(如人工耳蜗、心脏起搏器)面临的一个主要问题,其中不需要的生物分子的吸附会对界面电荷转移过程产生不利影响,这严重损害了它们以高保真度感知和传输电信号的能力。聚吡咯(PPy)是一种导电聚合物,其天然的高阻抗、离子和电导率、机械“柔软性”以及生物相容性使其成为下一代神经电极界面的主要候选材料。然而,PPy(以及相关导电聚合物)表面在暴露于生物流体(如血液、外淋巴液、唾液)时容易受到表面污染,这会损害其性能并缩短其预期工作寿命。在此,我们报告了润滑素(LUB)涂层(一种快速自组装的生物抗粘附糖蛋白)减轻电化学生长的PPy薄膜表面污染所引起的有害电化学效应的能力。LUB是一种生物抗粘附糖蛋白,能快速自组装并强烈粘附于包括PPy在内的大多数界面,从而形成一种易于应用且高效的涂层。对LUB涂层的PPy电极进行了电化学表征,并针对牛血清白蛋白(BSA)浓缩溶液以及长期暴露于人工外淋巴液(AP)后的情况评估了其防污性能。在AP溶液中进行的为期6天的定期阻抗测量表明,LUB涂层在模拟实际条件下具有保持稳定阻抗值的高稳定性和能力。