Suppr超能文献

微生物链伸长和随后的伸长羧酸发酵作为 H 产生过程,用于持续还原脱氯氯代乙稀。

Microbial Chain Elongation and Subsequent Fermentation of Elongated Carboxylates as H-Producing Processes for Sustained Reductive Dechlorination of Chlorinated Ethenes.

机构信息

Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Ave., Tempe, Arizona 85287, United States.

School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States.

出版信息

Environ Sci Technol. 2021 Aug 3;55(15):10398-10410. doi: 10.1021/acs.est.1c01319. Epub 2021 Jul 20.

Abstract

In situ anaerobic groundwater bioremediation of trichloroethene (TCE) to nontoxic ethene is contingent on organohalide-respiring , the most common strictly hydrogenotrophic (). The H requirement for is fulfilled by adding various organic substrates (e.g., lactate, emulsified vegetable oil, and glucose/molasses), which require fermenting microorganisms to convert them to H. The net flux of H is a crucial controlling parameter in the efficacy of bioremediation. H consumption by competing microorganisms (e.g., methanogens and homoacetogens) can diminish the rates of reductive dechlorination or stall the process altogether. Furthermore, some fermentation pathways do not produce H or having H as a product is not always thermodynamically favorable under environmental conditions. Here, we report on a novel application of microbial chain elongation as a H-producing process for reductive dechlorination. In soil microcosms bioaugmented with dechlorinating and chain-elongating enrichment cultures, near stoichiometric conversion of TCE (0.07 ± 0.01, 0.60 ± 0.03, and 1.50 ± 0.20 mmol L added sequentially) to ethene was achieved when initially stimulated by chain elongation of acetate and ethanol. Chain elongation initiated reductive dechlorination by liberating H in the conversion of acetate and ethanol to butyrate and caproate. Syntrophic fermentation of butyrate, a chain-elongation product, to H and acetate further sustained the reductive dechlorination activity. Methanogenesis was limited during TCE dechlorination in soil microcosms and absent in transfer cultures fed with chain-elongation substrates. This study provides critical fundamental knowledge toward the feasibility of chlorinated solvent bioremediation based on microbial chain elongation.

摘要

原位厌氧地下水修复三氯乙烯(TCE)为无毒乙烯取决于有机卤化物呼吸,最常见的严格氢营养型()。的 H 需要通过添加各种有机底物(例如,乳酸盐、乳化植物油和葡萄糖/糖蜜)来满足,这些有机底物需要发酵微生物将其转化为 H。H 的净通量是生物修复功效的关键控制参数。竞争微生物(例如,产甲烷菌和同型产乙酸菌)的 H 消耗会降低还原脱氯的速率或完全停止该过程。此外,一些发酵途径不产生 H 或 H 作为产物在环境条件下并不总是热力学有利的。在这里,我们报告了微生物链伸长作为还原脱氯产 H 过程的一种新应用。在添加脱氯和链伸长富集培养物的土壤微宇宙中,当最初通过乙酸盐和乙醇的链伸长刺激时,TCE(依次添加 0.07±0.01、0.60±0.03 和 1.50±0.20mmol L)几乎达到化学计量转化率为乙烯。通过将乙酸盐和乙醇转化为丁酸盐和己酸盐,链伸长释放 H,从而引发还原脱氯。丁酸盐的共生发酵,一种链伸长产物,到 H 和乙酸盐进一步维持还原脱氯活性。在土壤微宇宙中进行 TCE 脱氯时,产甲烷作用受到限制,在以链伸长底物为食的转移培养物中不存在。这项研究为基于微生物链伸长的氯化溶剂生物修复的可行性提供了关键的基础知识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验