Suppr超能文献

基于双能CT的质子治疗质量密度和相对阻止本领估计:运用基于物理知识的深度学习方法

Dual-energy CT based mass density and relative stopping power estimation for proton therapy using physics-informed deep learning.

作者信息

Chang Chih-Wei, Gao Yuan, Wang Tonghe, Lei Yang, Wang Qian, Pan Shaoyan, Sudhyadhom Atchar, Bradley Jeffrey D, Liu Tian, Lin Liyong, Zhou Jun, Yang Xiaofeng

机构信息

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America.

Department of Biomedical Informatics, Emory University, Atlanta, GA 30308, United States of America.

出版信息

Phys Med Biol. 2022 May 26;67(11). doi: 10.1088/1361-6560/ac6ebc.

Abstract

Proton therapy requires accurate dose calculation for treatment planning to ensure the conformal doses are precisely delivered to the targets. The conversion of CT numbers to material properties is a significant source of uncertainty for dose calculation. The aim of this study is to develop a physics-informed deep learning (PIDL) framework to derive accurate mass density and relative stopping power maps from dual-energy computed tomography (DECT) images. The PIDL framework allows deep learning (DL) models to be trained with a physics loss function, which includes a physics model to constrain DL models. Five DL models were implemented including a fully connected neural network (FCNN), dual-FCNN (DFCNN), and three variants of residual networks (ResNet): ResNet-v1 (RN-v1), ResNet-v2 (RN-v2), and dual-ResNet-v2 (DRN-v2). An artificial neural network (ANN) and the five DL models trained with and without physics loss were explored to evaluate the PIDL framework. Two empirical DECT models were implemented to compare with the PIDL method. DL training data were from CIRS electron density phantom 062M (Computerized Imaging Reference Systems, Inc., Norfolk, VA). The performance of DL models was tested by CIRS adult male, adult female, and 5-year-old child anthropomorphic phantoms. For density map inference, the physics-informed RN-v2 was 3.3%, 2.9% and 1.9% more accurate than ANN for the adult male, adult female, and child phantoms. The physics-informed DRN-v2 was 0.7%, 0.6%, and 0.8% more accurate than DRN-v2 without physics training for the three phantoms, respectfully. The results indicated that physics-informed training could reduce uncertainty when ANN/DL models without physics training were insufficient to capture data structures or derived significant errors. DL models could also achieve better image noise control compared to the empirical DECT parametric mapping methods. The proposed PIDL framework can potentially improve proton range uncertainty by offering accurate material properties conversion from DECT.

摘要

质子治疗需要精确的剂量计算用于治疗计划,以确保适形剂量能精确地传递到靶区。CT值到物质属性的转换是剂量计算中不确定性的一个重要来源。本研究的目的是开发一个基于物理知识的深度学习(PIDL)框架,以便从双能计算机断层扫描(DECT)图像中推导准确的质量密度和相对阻止本领图。该PIDL框架允许使用物理损失函数训练深度学习(DL)模型,该物理损失函数包含一个用于约束DL模型的物理模型。实现了五个DL模型,包括全连接神经网络(FCNN)、双FCNN(DFCNN)以及三种残差网络(ResNet)变体:ResNet-v1(RN-v1)、ResNet-v2(RN-v2)和双ResNet-v2(DRN-v2)。探索了一个人工神经网络(ANN)以及五个使用和不使用物理损失训练的DL模型,以评估PIDL框架。实现了两个经验DECT模型用于与PIDL方法进行比较。DL训练数据来自CIRS电子密度体模062M(计算机成像参考系统公司,弗吉尼亚州诺福克)。DL模型的性能通过CIRS成年男性、成年女性和5岁儿童的体模进行测试。对于密度图推断,基于物理知识的RN-v2在成年男性、成年女性和儿童体模上比ANN分别精确3.3%、2.9%和1.9%。基于物理知识的DRN-v2在这三个体模上比未经过物理训练的DRN-v2分别精确0.7%、0.6%和0.8%。结果表明,当没有物理训练的ANN/DL模型不足以捕捉数据结构或产生显著误差时,基于物理知识的训练可以减少不确定性。与经验DECT参数映射方法相比,DL模型还能实现更好的图像噪声控制。所提出的PIDL框架通过提供从DECT准确的物质属性转换,有可能改善质子射程的不确定性。

相似文献

2
Single energy CT-based mass density and relative stopping power estimation for proton therapy using deep learning method.
Front Oncol. 2023 Nov 23;13:1278180. doi: 10.3389/fonc.2023.1278180. eCollection 2023.
4
Multimodal imaging-based material mass density estimation for proton therapy using supervised deep learning.
Br J Radiol. 2023 Dec;96(1152):20220907. doi: 10.1259/bjr.20220907. Epub 2023 Oct 3.

引用本文的文献

1
Recent advances in applying machine learning to proton radiotherapy.
Biomed Phys Eng Express. 2025 Jul 23;11(4):042005. doi: 10.1088/2057-1976/adeb90.
2
Deep learning-based Fast Volumetric Image Generation for Image-guided Proton Radiotherapy.
IEEE Trans Radiat Plasma Med Sci. 2024 Nov;8(8):973-983. doi: 10.1109/trpms.2024.3439585.
3
Photon-counting CT in cancer radiotherapy: technological advances and clinical benefits.
Phys Med Biol. 2025 May 16;70(10):10TR01. doi: 10.1088/1361-6560/add4ba.
4
Exploration of an adaptive proton therapy strategy using CBCT with the concept of digital twins.
Phys Med Biol. 2025 Jan 17;70(2):025010. doi: 10.1088/1361-6560/ada684.
7
CT-based synthetic iodine map generation using conditional denoising diffusion probabilistic model.
Med Phys. 2024 Sep;51(9):6246-6258. doi: 10.1002/mp.17258. Epub 2024 Jun 18.
10

本文引用的文献

1
NRG Oncology Survey of Monte Carlo Dose Calculation Use in US Proton Therapy Centers.
Int J Part Ther. 2021 May 25;8(2):73-81. doi: 10.14338/IJPT-D-21-00004. eCollection 2021 Fall.
2
Metal artifact reduction in 2D CT images with self-supervised cross-domain learning.
Phys Med Biol. 2021 Aug 23;66(17). doi: 10.1088/1361-6560/ac195c.
3
Dual-Energy Computed Tomography Proton-Dose Calculation with Scripting and Modified Hounsfield Units.
Int J Part Ther. 2021 Jun 25;8(1):62-72. doi: 10.14338/IJPT-20-00075.1. eCollection 2021 Summer.
4
Deep Sinogram Completion With Image Prior for Metal Artifact Reduction in CT Images.
IEEE Trans Med Imaging. 2021 Jan;40(1):228-238. doi: 10.1109/TMI.2020.3025064. Epub 2020 Dec 29.
6
Data-driven discovery of coordinates and governing equations.
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22445-22451. doi: 10.1073/pnas.1906995116. Epub 2019 Oct 21.
7
A dual-stream deep convolutional network for reducing metal streak artifacts in CT images.
Phys Med Biol. 2019 Nov 26;64(23):235003. doi: 10.1088/1361-6560/ab4e3e.
8
ADN: Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction.
IEEE Trans Med Imaging. 2020 Mar;39(3):634-643. doi: 10.1109/TMI.2019.2933425. Epub 2019 Aug 5.
9
Determination of proton stopping power ratio with dual-energy CT in 3D-printed tissue/air cavity surrogates.
Med Phys. 2019 Jul;46(7):3245-3253. doi: 10.1002/mp.13587. Epub 2019 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验