O Amorim Carlos, Amaral João S, Amaral Vítor S
Physics Department and CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
Phys Chem Chem Phys. 2021 Aug 4;23(30):16053-16059. doi: 10.1039/d1cp00885d.
The search for magnetoelectric materials typically revolves around the struggle to make magnetic and ferroelectric orders simultaneously coexist in the same material, using either an intrinsic or an extrinsic/composite approach. Via ab initio calculations of a prototypical Fe/BaTiO3 interface, we predict that it is possible to tune the magnitude of the individual magnetic moments even for non-polar BaTiO3. By comparing polar and non-polar Fe/BaTiO3 heterostructures, we show that the Fe, Ti and equatorial O atomic magnetic moments are induced and enhanced as a result of their local crystal field. The crystal field may be controlled solely by manipulation of the inter-atomic distances of their neighbouring atoms (which will affect their electrostatic fields and orbital hybridizations), or by the BaTiO3 electric dipole moments, working as a local polarization. When this polarization is present, it dominates the crystal field contributions, thus constraining the effects of other perturbations such as strain. We also find that, contrary to conventional expectations, the non-polar heterostructure shows higher strain induced magnetization sensitivity than its polar counterpart.
对磁电材料的探索通常围绕着如何使用本征或非本征/复合方法使磁性和铁电有序在同一材料中同时共存这一难题展开。通过对典型的Fe/BaTiO₃界面进行从头算,我们预测即使对于非极性的BaTiO₃,也有可能调节单个磁矩的大小。通过比较极性和非极性的Fe/BaTiO₃异质结构,我们表明Fe、Ti和赤道O原子的磁矩由于其局部晶体场而被诱导并增强。晶体场可以仅通过操纵其相邻原子的原子间距离(这将影响它们的静电场和轨道杂化)来控制,或者通过作为局部极化的BaTiO₃电偶极矩来控制。当这种极化存在时,它主导晶体场贡献,从而限制其他微扰(如应变)的影响。我们还发现,与传统预期相反,非极性异质结构显示出比其极性对应物更高的应变诱导磁化灵敏度。