Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Catalonia, Spain.
Nanoscale. 2013 Sep 7;5(17):8037-44. doi: 10.1039/c3nr01011b.
Ferroelectric (FE) and ferromagnetic (FM) materials engineered in horizontal heterostructures allow interface-mediated magnetoelectric coupling. The so-called converse magnetoelectric effect (CME) has been already demonstrated by electric-field poling of the ferroelectric layers and subsequent modification of the magnetic state of adjacent ferromagnetic layers by strain effects and/or free-carrier density tuning. Here we focus on the direct magnetoelectric effect (DME) where the dielectric state of a ferroelectric thin film is modified by a magnetic field. Ferroelectric BaTiO3 (BTO) and ferromagnetic CoFe2O4 (CFO) oxide thin films have been used to create epitaxial FE/FM and FM/FE heterostructures on SrTiO3(001) substrates buffered with metallic SrRuO3. It will be shown that large ferroelectric polarization and DME can be obtained by appropriate selection of the stacking order of the FE and FM films and their relative thicknesses. The dielectric permittivity, at the structural transitions of BTO, is strongly modified (up to 36%) when measurements are performed under a magnetic field. Due to the insulating nature of the ferromagnetic layer and the concomitant absence of the electric-field effect, the observed DME effect solely results from the magnetostrictive response of CFO elastically coupled to the BTO layer. These findings show that appropriate architecture and materials selection allow overcoming substrate-induced clamping in multiferroic multi-layered films.
铁电 (FE) 和铁磁 (FM) 材料在水平异质结构中的设计允许界面介导的磁电耦合。所谓的逆磁电效应 (CME) 已经通过铁电层的电场极化和应变效应和/或自由载流子密度调谐来修饰相邻铁磁层的磁状态来证明。在这里,我们关注直接磁电效应 (DME),其中铁电薄膜的介电状态通过磁场来修饰。铁电 BaTiO3 (BTO) 和铁磁 CoFe2O4 (CFO) 氧化物薄膜已被用于在 SrTiO3(001) 衬底上创建外延 FE/FM 和 FM/FE 异质结构,该衬底由金属 SrRuO3 缓冲。将表明,通过适当选择 FE 和 FM 薄膜的堆叠顺序及其相对厚度,可以获得大的铁电极化和 DME。当在磁场下进行测量时,BTO 的结构转变时的介电常数会强烈改变(高达 36%)。由于铁磁层的绝缘性质和随之而来的不存在电场效应,观察到的 DME 效应仅源自与 BTO 层弹性耦合的 CFO 的磁致伸缩响应。这些发现表明,适当的结构和材料选择允许克服多层铁电多层膜中基底诱导的夹紧。