Suppr超能文献

深度学习方法自动化植物中多种表观遗传修饰的全基因组预测。

A deep learning approach to automate whole-genome prediction of diverse epigenomic modifications in plants.

机构信息

Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.

出版信息

New Phytol. 2021 Oct;232(2):880-897. doi: 10.1111/nph.17630. Epub 2021 Aug 12.

Abstract

Epigenetic modifications function in gene transcription, RNA metabolism, and other biological processes. However, multiple factors currently limit the scientific utility of epigenomic datasets generated for plants. Here, using deep-learning approaches, we developed a Smart Model for Epigenetics in Plants (SMEP) to predict six types of epigenomic modifications: DNA 5-methylcytosine (5mC) and N6-methyladenosine (6mA) methylation, RNA N6-methyladenosine (m A) methylation, and three types of histone modification. Using the datasets from the japonica rice Nipponbare, SMEP achieved 95% prediction accuracy for 6mA, and also achieved around 80% for 5mC, m A, and the three types of histone modification based on the 10-fold cross-validation. Additionally, > 95% of the 6mA peaks detected after a heat-shock treatment were predicted. We also successfully applied the SMEP for examining epigenomic modifications in indica rice 93-11 and even the B73 maize line. Taken together, we show that the deep-learning-enabled SMEP can reliably mine epigenomic datasets from diverse plants to yield actionable insights about epigenomic sites. Thus, our work opens new avenues for the application of predictive tools to facilitate functional research, and will almost certainly increase the efficiency of genome engineering efforts.

摘要

表观遗传修饰在基因转录、RNA 代谢和其他生物过程中发挥作用。然而,目前有多种因素限制了为植物生成的表观基因组数据集的科学应用。在这里,我们使用深度学习方法开发了一种植物表观遗传学智能模型(SMEP),用于预测六种类型的表观遗传修饰:DNA 5-甲基胞嘧啶(5mC)和 N6-甲基腺嘌呤(6mA)甲基化、RNA N6-甲基腺嘌呤(m A)甲基化,以及三种类型的组蛋白修饰。使用来自粳稻 Nipponbare 的数据集,SMEP 对 6mA 的预测准确率达到 95%,对 5mC、m A 和三种类型的组蛋白修饰的预测准确率也达到了 80%左右,这是基于 10 倍交叉验证的结果。此外,热处理后检测到的 >95%的 6mA 峰都被预测到了。我们还成功地将 SMEP 应用于检测籼稻 93-11 和甚至 B73 玉米系的表观遗传修饰。总之,我们表明,深度学习支持的 SMEP 可以从不同的植物中可靠地挖掘表观基因组数据集,从而为表观遗传位点提供可操作的见解。因此,我们的工作为应用预测工具促进功能研究开辟了新途径,并且几乎肯定会提高基因组工程工作的效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验