Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
Oesch-Tox Toxicological Consulting and Expert Opinions, Ingelheim, Germany and Institute of Toxicology, Johannes Gutenberg University of Mainz, Mainz, Germany.
Med Res Rev. 2021 Nov;41(6):3023-3061. doi: 10.1002/med.21842. Epub 2021 Jul 21.
The sesquiterpene lactone artemisinin from Artemisia annua L. is well established for malaria therapy, but its bioactivity spectrum is much broader. In this review, we give a comprehensive and timely overview of the literature regarding the immunosuppressive activity of artemisinin-type compounds toward inflammatory and autoimmune diseases. Numerous receptor-coupled signaling pathways are inhibited by artemisinins, including the receptors for interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), β3-integrin, or RANKL, toll-like receptors and growth factor receptors. Among the receptor-coupled signal transducers are extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), AKT serine/threonine kinase (AKT), mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK) kinase (MEK), phospholipase C γ1 (PLCγ), and others. All these receptors and signal transduction molecules are known to contribute to the inhibition of the transcription factor nuclear factor κ B (NF-κB). Artemisinins may inhibit NF-κB by silencing these upstream pathways and/or by direct binding to NF-κB. Numerous NF-κB-regulated downstream genes are downregulated by artemisinin and its derivatives, for example, cytokines, chemokines, and immune receptors, which regulate immune cell differentiation, apoptosis genes, proliferation-regulating genes, signal transducers, and genes involved in antioxidant stress response. In addition to the prominent role of NF-κB, other transcription factors are also inhibited by artemisinins (mammalian target of rapamycin [mTOR], activating protein 1 [AP1]/FBJ murine osteosarcoma viral oncogene homologue [FOS]/JUN oncogenic transcription factor [JUN]), hypoxia-induced factor 1α (HIF-1α), nuclear factor of activated T cells c1 (NF-ATC1), Signal transducers and activators of transcription (STAT), NF E2-related factor-2 (NRF-2), retinoic-acid-receptor-related orphan nuclear receptor γ (ROR-γt), and forkhead box P-3 (FOXP-3). Many in vivo experiments in disease-relevant animal models demonstrate therapeutic efficacy of artemisinin-type drugs against rheumatic diseases (rheumatoid arthritis, osteoarthritis, lupus erythematosus, arthrosis, and gout), lung diseases (asthma, acute lung injury, and pulmonary fibrosis), neurological diseases (autoimmune encephalitis, Alzheimer's disease, and myasthenia gravis), skin diseases (dermatitis, rosacea, and psoriasis), inflammatory bowel disease, and other inflammatory and autoimmune diseases. Randomized clinical trials should be conducted in the future to translate the plethora of preclinical results into clinical practice.
青蒿素是从青蒿(Artemisia annua L.)中提取的倍半萜内酯,已被广泛用于疟疾的治疗,但它的生物活性谱要广泛得多。在这篇综述中,我们全面而及时地回顾了有关青蒿素类化合物对炎症和自身免疫性疾病的免疫抑制活性的文献。青蒿素抑制了许多受体偶联的信号通路,包括白细胞介素-1(IL-1)、肿瘤坏死因子-α(TNF-α)、β3-整合素或 RANKL、 Toll 样受体和生长因子受体的受体。在受体偶联的信号转导分子中,有细胞外信号调节蛋白激酶(ERK)、c-Jun N 末端激酶(JNK)、磷脂酰肌醇-4,5-二磷酸 3-激酶(PI3K)、丝氨酸/苏氨酸激酶(AKT)、丝裂原激活蛋白激酶(MAPK)/细胞外信号调节激酶(ERK)激酶(MEK)、磷脂酶 Cγ1(PLCγ)等。所有这些受体和信号转导分子都被认为有助于抑制转录因子核因子 κB(NF-κB)。青蒿素可能通过沉默这些上游途径和/或直接与 NF-κB 结合来抑制 NF-κB。青蒿素及其衍生物还可以下调许多 NF-κB 调节的下游基因,例如细胞因子、趋化因子和免疫受体,它们调节免疫细胞分化、凋亡基因、增殖调节基因、信号转导和抗氧化应激反应相关基因。除了 NF-κB 的突出作用外,其他转录因子也被青蒿素抑制(雷帕霉素靶蛋白[mTOR]、激活蛋白 1[AP1]/FBJ 鼠骨肉瘤病毒癌基因同源物[FOS]/JUN 致癌转录因子[JUN]、缺氧诱导因子 1α(HIF-1α)、活化 T 细胞核因子 c1(NF-ATC1)、信号转导和转录激活因子(STAT)、核因子 E2 相关因子-2(NRF-2)、视黄酸受体相关孤儿核受体γ(ROR-γt)和叉头框 P-3(FOXP-3)。许多在疾病相关动物模型中的体内实验证明了青蒿素类药物对风湿性疾病(类风湿关节炎、骨关节炎、红斑狼疮、骨关节炎和痛风)、肺部疾病(哮喘、急性肺损伤和肺纤维化)、神经疾病(自身免疫性脑炎、阿尔茨海默病和重症肌无力)、皮肤疾病(皮炎、酒渣鼻和银屑病)、炎症性肠病和其他炎症性和自身免疫性疾病的治疗效果。未来应进行随机临床试验,将大量的临床前结果转化为临床实践。