Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.
State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
FASEB J. 2021 Aug;35(8):e21769. doi: 10.1096/fj.202002728R.
Neuronal activity regulates spatial distribution of the SUMOylation system in cytosolic and dendritic sites, which has been implicated in learning, memory, and underlying synaptic structural and functional remodeling in the hippocampus. However, the functional target proteins for activated small ubiquitin-like modifiers (SUMOs) and downstream molecular consequences behind long-term potentiation (LTP) of synaptic plasticity remain to be elucidated. In this study, we showed that N-methyl-D-aspartate receptor-mediated neuronal activity induced the covalent modification of cytosolic Akt1 by small ubiquitin-like modifier 1 (SUMO1) in rat cortical and hippocampal CA1 neurons. Protein inhibitor of activated STAT3 (PIAS3) was involved in the activity-induced Akt1 SUMO1-ylation, and K64 and K276 residues were major SUMOylated sites. Importantly, Akt1 SUMOylation at K64 and K276 enhanced its enzymatic activity and facilitated T308 phosphorylation. Furthermore, the N-terminal SAP domain of PIAS3 bound Akt1 directly. The disruption of Akt1-PIAS3 interaction by Tat-SAP, a synthetic Tat-fused cell-permeable peptide containing PIAS3 SAP domain, inhibited neuronal activity-induced Akt1 SUMOylation and impaired LTP expression and late phase LTP maintenance in the hippocampus. Correlatedly, Tat-SAP not only blocked the LTP-related extracellular signal-regulated kinase (ERK)1/2-Elk-1-brain-derived neurotrophic factor (BDNF)/Arc signaling, but also disrupted mammalian target of rapamycin (mTOR)-eIF4E-binding protein 1 (4E-BP1) pathway. These findings reveal an activity-induced Akt1 SUMOylation by PIAS3 that contributes to ERK1/2-BDNF/Arc and mTOR-4E-BP1 cascades, and in turn, long-lasting excitatory synaptic responses.
神经元活动调节细胞溶质和树突部位 SUMO 化系统的空间分布,这与学习、记忆以及海马体中潜在的突触结构和功能重塑有关。然而,对于被激活的小泛素样修饰物(SUMO)的功能靶蛋白和突触可塑性的长时程增强(LTP)背后的下游分子后果仍有待阐明。在这项研究中,我们表明,N-甲基-D-天冬氨酸受体介导的神经元活动诱导了大鼠皮质和海马 CA1 神经元中细胞质 Akt1 的共价修饰,由小泛素样修饰物 1(SUMO1)进行。信号转导和转录激活因子 3 的蛋白抑制剂(PIAS3)参与了活性诱导的 Akt1 SUMO1 化,并且 K64 和 K276 残基是主要的 SUMO 化位点。重要的是,Akt1 在 K64 和 K276 处的 SUMO 化增强了其酶活性并促进了 T308 磷酸化。此外,PIAS3 的 N 端 SAP 结构域直接与 Akt1 结合。Tat-SAP(一种包含 PIAS3 SAP 结构域的合成 Tat 融合细胞可渗透肽)通过破坏 Akt1-PIAS3 相互作用,抑制神经元活动诱导的 Akt1 SUMO 化,并损害海马体中的 LTP 表达和晚期 LTP 维持。相关地,Tat-SAP 不仅阻断了与 LTP 相关的细胞外信号调节激酶(ERK1/2)-Elk-1-脑源性神经营养因子(BDNF)/Arc 信号,还破坏了雷帕霉素靶蛋白(mTOR)-真核翻译起始因子 4E 结合蛋白 1(4E-BP1)途径。这些发现揭示了 PIAS3 诱导的 Akt1 SUMO 化,该过程有助于 ERK1/2-BDNF/Arc 和 mTOR-4E-BP1 级联反应,进而促进持久的兴奋性突触反应。