ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia.
ACS Appl Mater Interfaces. 2021 Aug 4;13(30):35494-35505. doi: 10.1021/acsami.1c09406. Epub 2021 Jul 21.
Polymer nanocapsules, with a hollow structure, are increasingly finding widespread use as drug delivery carriers; however, quantitatively evaluating the bio-nano interactions of nanocapsules remains challenging. Herein, poly(ethylene glycol) (PEG)-based metal-phenolic network (MPN) nanocapsules of three sizes (50, 100, and 150 nm) are engineered via supramolecular template-assisted assembly and the effect of the nanocapsule size on bio-nano interactions is investigated using in vitro cell experiments, ex vivo whole blood assays, and in vivo rat models. To track the nanocapsules by mass cytometry, a preformed gold nanoparticle (14 nm) is encapsulated into each PEG-MPN nanocapsule. The results reveal that decreasing the size of the PEG-MPN nanocapsules from 150 to 50 nm leads to reduced association (up to 70%) with phagocytic blood cells in human blood and prolongs in vivo systemic exposure in rat models. The findings provide insights into MPN-based nanocapsules and represent a platform for studying bio-nano interactions.
聚合物纳米胶囊具有中空结构,作为药物传递载体的应用越来越广泛;然而,定量评估纳米胶囊的生物-纳米相互作用仍然具有挑战性。在此,通过超分子模板辅助组装工程合成了三种尺寸(50、100 和 150nm)的聚乙二醇(PEG)基金属酚醛网络(MPN)纳米胶囊,并通过体外细胞实验、离体全血测定和体内大鼠模型研究了纳米胶囊尺寸对生物-纳米相互作用的影响。为了通过质谱流式细胞术追踪纳米胶囊,将预形成的金纳米颗粒(14nm)封装到每个 PEG-MPN 纳米胶囊中。结果表明,将 PEG-MPN 纳米胶囊的尺寸从 150nm 减小到 50nm 会导致其与人血液中吞噬血细胞的结合减少(高达 70%),并延长在大鼠模型中的体内系统暴露时间。这些发现为基于 MPN 的纳米胶囊提供了深入的了解,并代表了研究生物-纳米相互作用的平台。