Lawrence Paul T, Daniels Avery S, Tierney Allison J, Sykes E Charles H, Mace Charles R
Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States.
ACS Omega. 2024 Aug 13;9(34):36847-36856. doi: 10.1021/acsomega.4c06568. eCollection 2024 Aug 27.
The drive to improve the safety and efficacy of radiotherapies for cancers has prompted the development of nanomaterials that can locally amplify the radiation dose at a tumor without damaging the surrounding healthy tissue. Gold nanoparticles (Au NPs), in particular, exhibit promising radiosensitizing properties under kilovolt X-ray exposure, although the precise mechanism behind this enhancement is not fully understood. While most studies recognize the involvement of factors such as core composition, size, shape, and ligand chemistry in the effectiveness of Au NPs for radiation-induced cancer treatment, there is a scarcity of direct assessments that connect the photophysical properties of the nanomaterial with the observed cellular or biological outcomes. Despite previous evidence of low-energy electron (LEE) emission from Au NPs and their potential to initiate biological damage, to our knowledge, no studies directly correlate the secondary LEE emission with radiation-induced cell death. In this study we assessed Au NPs functionalized with polyethylene glycol (PEG) ligands of varying molecular weights and lengths (1, 5, and 20 kDa PEG) as potential radiosensitizers of A549 lung cancer cells using kilovolt X-ray source potentials (33-130 kVp). We assessed NP internalization using mass cytometry, radiation dose enhancement using clonogenic survival assays, and secondary LEE emission using a retarding field analyzer. Results reveal a statistically significant difference in cellular uptake and radiation dose enhancement for 5 kDa PEG-Au NPs compared to formulations using 1 and 20 kDa PEG, while analysis of secondary LEE emission spectra demonstrated that differences in the length of the PEG ligand did not cause statistically significant attenuation of secondary LEE flux. Consequently, we inferred increased cellular uptake of NPs to be the cause for the observed enhancement in radiosensitivity for 5 kDa PEGylated Au NPs. The approach used in this study establishes a more complete workflow for designing and characterizing the performance of nanomaterial radiosensitizers, allowing for quantification of secondary LEEs and cellular uptake, and ultimately correlation with localized dose enhancement that leads to cell death.
提高癌症放射治疗安全性和有效性的需求促使了纳米材料的发展,这些纳米材料能够在不损伤周围健康组织的情况下,局部增强肿瘤部位的辐射剂量。特别是金纳米颗粒(Au NPs),在千伏X射线照射下表现出有前景的放射增敏特性,尽管这种增强背后的确切机制尚未完全明了。虽然大多数研究认识到诸如核心组成、尺寸、形状和配体化学等因素在Au NPs用于辐射诱导癌症治疗的有效性中的作用,但缺乏直接评估将纳米材料的光物理性质与观察到的细胞或生物学结果联系起来。尽管先前有证据表明Au NPs会发射低能电子(LEE)及其引发生物损伤的潜力,但据我们所知,没有研究直接将二次LEE发射与辐射诱导的细胞死亡相关联。在本研究中,我们评估了用不同分子量和长度(1、5和20 kDa PEG)的聚乙二醇(PEG)配体功能化的Au NPs,作为使用千伏X射线源电势(33 - 130 kVp)的A549肺癌细胞的潜在放射增敏剂。我们使用质谱流式细胞术评估纳米颗粒的内化,使用克隆形成存活试验评估辐射剂量增强,并使用减速场分析仪评估二次LEE发射。结果显示,与使用1 kDa和20 kDa PEG的制剂相比,5 kDa PEG - Au NPs在细胞摄取和辐射剂量增强方面存在统计学上的显著差异,而二次LEE发射光谱分析表明,PEG配体长度的差异并未导致二次LEE通量的统计学显著衰减。因此,我们推断纳米颗粒细胞摄取的增加是观察到的5 kDa聚乙二醇化Au NPs放射敏感性增强的原因。本研究中使用的方法为设计和表征纳米材料放射增敏剂的性能建立了更完整的工作流程,能够对二次LEE和细胞摄取进行量化,并最终与导致细胞死亡的局部剂量增强相关联。