Managutti Praveen B, Tymen Simon, Liu Xiu, Hernandez Olivier, Prestipino Carmelo, Le Gal La Salle Annie, Paul Sébastien, Jalowiecki-Duhamel Louise, Dorcet Vincent, Billard Alain, Briois Pascal, Bahout Mona
Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
Institut des Matériaux Jean Rouxel (IMN), UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP, 32229 Nantes Cedex 3, France.
ACS Appl Mater Interfaces. 2021 Aug 4;13(30):35719-35728. doi: 10.1021/acsami.1c08158. Epub 2021 Jul 21.
Exsolution is a promising technique to design metal nanoparticles for electrocatalysis and renewable energy. In this work, Ni-doped perovskites, (PrBa)MnNiO with = 0, 0.05, 0.1, and 0.2 (S-PBMNx), were prepared to design exsolution systems as solid oxide fuel cell anodes and for catalysis applications. X-ray diffraction and transmission electron microscopy (TEM) analyses demonstrated that correlating A-site deficiency with Ni content can effectively induce exsolution of all Ni under H atmosphere at ∼ 875 °C, yielding the reduced (exsolved) R-PBMNx materials. On heating the exsolution systems in air, metal incorporation in the oxide lattice did not occur; instead, the Ni nanoparticles oxidized to NiO on the layered perovskite surface. The lowest area-specific resistance (ASR) under wet 5% H/N in symmetrical cells was observed for -PBMN0.2 anode (ASR ∼ 0.64 Ω cm at 850 °C) due to the highest Ni particle density in the -PBMNx series. The best performance for dry reforming of methane (DRM) was also obtained for -PBMN0.2, with CH and CO conversion rates at 11 and 32%, respectively, and the highest production of H (37%). The DRM activity of -PBMN0.2 starts at 800 °C and is sustained for up to at least 5 h operation with little carbon deposition (0.017 g·gcat·h). These results clearly demonstrate that varying Ni-doping in layered double perovskite oxides is an effective strategy to manipulate the electrochemical performance and catalytic activity for energy conversion purposes.
析出法是一种很有前景的技术,可用于设计用于电催化和可再生能源的金属纳米颗粒。在这项工作中,制备了镍掺杂的钙钛矿(PrBa)MnNiO,其中 = 0、0.05、0.1和0.2(S-PBMNx),以设计析出体系作为固体氧化物燃料电池阳极和用于催化应用。X射线衍射和透射电子显微镜(TEM)分析表明,将A位缺陷与镍含量相关联可以在约875°C的氢气气氛下有效诱导所有镍的析出,从而得到还原的(析出的)R-PBMNx材料。在空气中加热析出体系时,氧化物晶格中不会发生金属掺入;相反,镍纳米颗粒在层状钙钛矿表面氧化成NiO。由于-PBMNx系列中镍颗粒密度最高,在对称电池中湿5%H/ N条件下观察到-PBMN0.2阳极的最低面积比电阻(ASR)(850°C时ASR约为0.64Ω·cm)。-PBMN0.2在甲烷干重整(DRM)方面也表现出最佳性能,CH和CO转化率分别为11%和32%,氢气产量最高(37%)。-PBMN0.2的DRM活性在800°C开始,在至少5小时的运行中持续存在,几乎没有碳沉积(0.017 g·gcat·h)。这些结果清楚地表明,改变层状双钙钛矿氧化物中的镍掺杂是一种有效的策略,可用于操纵用于能量转换目的的电化学性能和催化活性。