Suppr超能文献

磷脂 -N- 甲基转移酶在嗜热细菌中产生各种甲基化的磷脂酰乙醇胺衍生物。

Phospholipid -Methyltransferases Produce Various Methylated Phosphatidylethanolamine Derivatives in Thermophilic Bacteria.

机构信息

Microbial Biology, Faculty of Biology, Ruhr University Bochumgrid.5570.7, Bochum, Germany.

出版信息

Appl Environ Microbiol. 2021 Sep 10;87(19):e0110521. doi: 10.1128/AEM.01105-21.

Abstract

One of the most common pathways for the biosynthesis of the phospholipid phosphatidylcholine (PC) in bacteria is the successive 3-fold -methylation of phosphatidylethanolamine (PE) catalyzed by phospholipid -methyltransferases (Pmts). Pmts with different activities have been described in a number of mesophilic bacteria. In the present study, we identified and characterized the substrate and product spectra of four Pmts from thermophilic bacteria. Three of these enzymes were purified in an active form. The Pmts from Melghirimyces thermohalophilus, Thermostaphylospora chromogena, and Thermobifida fusca produce monomethyl-PE (MMPE) and dimethyl-PE (DMPE). T. fusca encodes two Pmt candidates, one of which is inactivated by mutation and the other is responsible for the accumulation of large amounts of MMPE. The Pmt enzyme from Rubellimicrobium thermophilum catalyzes all three methylation reactions to synthesize PC. Moreover, we show that PE, previously reported to be absent in R. thermophilum, is in fact produced and serves as a precursor for the methylation pathway. In an alternative route, the strain is able to produce PC by the PC synthase pathway when choline is available. The activity of all purified thermophilic Pmt enzymes was stimulated by anionic lipids, suggesting membrane recruitment of these cytoplasmic proteins via electrostatic interactions. Our study provides novel insights into the functional characteristics of phospholipid -methyltransferases in a previously unexplored set of thermophilic environmental bacteria. In recent years, the presence of phosphatidylcholine (PC) in bacterial membranes has gained increasing attention, partly due to its critical role in the interaction with eukaryotic hosts. PC biosynthesis via a three-step methylation of phosphatidylethanolamine, catalyzed by phospholipid -methyltransferases (Pmts), has been described in a range of mesophilic bacteria. Here, we expand our knowledge on bacterial PC formation by the identification, purification, and characterization of Pmts from phylogenetically diverse thermophilic bacteria and thereby provide insights into the functional characteristics of Pmt enzymes in thermophilic actinomycetes and proteobacteria.

摘要

在细菌中磷脂酰胆碱(PC)生物合成的最常见途径之一是磷脂酰乙醇胺(PE)在磷脂甲基转移酶(Pmts)的催化下连续进行 3 次甲基化。在许多嗜中温菌中已经描述了具有不同活性的 Pmts。在本研究中,我们鉴定并表征了来自嗜热细菌的四种 Pmts 的底物和产物谱。其中三种酶以活性形式被纯化。来自 Melghirimyces thermohalophilus、Thermostaphylospora chromogena 和 Thermobifida fusca 的 Pmts 产生单甲基-PE(MMPE)和二甲基-PE(DMPE)。T. fusca 编码两个 Pmt 候选物,其中一个因突变而失活,另一个负责积累大量 MMPE。Rubellimicrobium thermophilum 的 Pmt 酶催化所有三种甲基化反应以合成 PC。此外,我们表明,先前报道在 R. thermophilum 中不存在的 PE 实际上是产生的,并作为甲基化途径的前体。在替代途径中,当胆碱可用时,该菌株能够通过 PC 合酶途径产生 PC。所有纯化的嗜热 Pmt 酶的活性均受阴离子脂质的刺激,表明这些细胞质蛋白通过静电相互作用被招募到膜上。我们的研究为以前未探索的一组嗜热环境细菌中的磷脂甲基转移酶的功能特征提供了新的见解。近年来,由于其与真核宿主相互作用的关键作用,细菌膜中存在磷脂酰胆碱(PC)引起了越来越多的关注。通过磷脂酰乙醇胺的三步甲基化,由磷脂甲基转移酶(Pmts)催化的 PC 生物合成已在一系列嗜中温细菌中得到描述。在这里,我们通过鉴定、纯化和表征来自系统发育多样的嗜热细菌的 Pmts,扩展了我们对细菌 PC 形成的认识,从而深入了解了嗜热放线菌和变形菌中 Pmt 酶的功能特征。

相似文献

2
Pathways for phosphatidylcholine biosynthesis in bacteria.
Microbiology (Reading). 2003 Dec;149(Pt 12):3461-3471. doi: 10.1099/mic.0.26522-0.
3
Phosphatidylcholine biosynthesis and function in bacteria.
Biochim Biophys Acta. 2013 Mar;1831(3):503-13. doi: 10.1016/j.bbalip.2012.08.009. Epub 2012 Aug 19.
4
5
Three separate pathways in maintain phosphatidylcholine biosynthesis, which is required for symbiotic nitrogen fixation with clover.
Appl Environ Microbiol. 2024 Sep 18;90(9):e0059024. doi: 10.1128/aem.00590-24. Epub 2024 Aug 9.
6
Dissection of membrane-binding and -remodeling regions in two classes of bacterial phospholipid N-methyltransferases.
Biochim Biophys Acta Biomembr. 2017 Dec;1859(12):2279-2288. doi: 10.1016/j.bbamem.2017.09.013. Epub 2017 Sep 11.
9
S-adenosyl-L-methionine-mediated enzymatic methylations in the rat retinal membranes.
J Ocul Pharmacol. 1994 Spring;10(1):253-63. doi: 10.1089/jop.1994.10.253.

引用本文的文献

1
Characterization of Tellurite Toxicity to Under Aerobic and Anaerobic Conditions.
Int J Mol Sci. 2025 Jul 28;26(15):7287. doi: 10.3390/ijms26157287.
2
Structural basis for phosphatidylcholine synthesis by bacterial phospholipid N-methyltransferases.
J Biol Chem. 2025 May;301(5):108507. doi: 10.1016/j.jbc.2025.108507. Epub 2025 Apr 11.
3
4
Three separate pathways in maintain phosphatidylcholine biosynthesis, which is required for symbiotic nitrogen fixation with clover.
Appl Environ Microbiol. 2024 Sep 18;90(9):e0059024. doi: 10.1128/aem.00590-24. Epub 2024 Aug 9.
5
Recombinant and endogenous ways to produce methylated phospholipids in Escherichia coli.
Appl Microbiol Biotechnol. 2021 Dec;105(23):8837-8851. doi: 10.1007/s00253-021-11654-8. Epub 2021 Oct 28.

本文引用的文献

1
Promiscuous phospholipid biosynthesis enzymes in the plant pathogen Pseudomonas syringae.
Biochim Biophys Acta Mol Cell Biol Lipids. 2021 Jul;1866(7):158926. doi: 10.1016/j.bbalip.2021.158926. Epub 2021 Mar 22.
2
Parallel molecular mechanisms for enzyme temperature adaptation.
Science. 2021 Mar 5;371(6533). doi: 10.1126/science.aay2784.
3
Principles of Membrane Adaptation Revealed through Environmentally Induced Bacterial Lipidome Remodeling.
Cell Rep. 2020 Sep 22;32(12):108165. doi: 10.1016/j.celrep.2020.108165.
4
Finding the generalized molecular principles of protein thermal stability.
Proteins. 2020 Jun;88(6):788-808. doi: 10.1002/prot.25866. Epub 2019 Dec 30.
6
Phosphatidylcholine Biosynthesis in Mitis Group Streptococci via Host Metabolite Scavenging.
J Bacteriol. 2019 Oct 21;201(22). doi: 10.1128/JB.00495-19. Print 2019 Nov 15.
7
A Comprehensive Functional Characterization of Escherichia coli Lipid Genes.
Cell Rep. 2019 Apr 30;27(5):1597-1606.e2. doi: 10.1016/j.celrep.2019.04.018.
8
Thermophilic Proteins as Versatile Scaffolds for Protein Engineering.
Microorganisms. 2018 Sep 25;6(4):97. doi: 10.3390/microorganisms6040097.
9
BacDive in 2019: bacterial phenotypic data for High-throughput biodiversity analysis.
Nucleic Acids Res. 2019 Jan 8;47(D1):D631-D636. doi: 10.1093/nar/gky879.
10
MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549. doi: 10.1093/molbev/msy096.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验