Suppr超能文献

基于微藻的光合作用策略用于给无血管化的鼠脑组织供氧——一项体外概念验证研究。

Microalgae-based photosynthetic strategy for oxygenating avascularised mouse brain tissue - An in vitro proof of concept study.

机构信息

Anaesthesia Department, Waikato District Health Board, Hamilton, New Zealand.

Department of Chemical and Bioprocess Engineering, Massey University, Palmerston North, New Zealand.

出版信息

Brain Res. 2021 Oct 1;1768:147585. doi: 10.1016/j.brainres.2021.147585. Epub 2021 Jul 18.

Abstract

Hypoxic brain injury is a leading cause of loss of quality of life globally for which there are currently no effective treatments. There has been increasing interest in incorporating photosynthesising agents into hypoxic tissue as a mechanism for in situ oxygen delivery, independent of vascular perfusion. To date this has not been tested in the brain. The oxygen production capacity of Chlamydomonas reinhardtii microalgal cultures was measured in artificial cerebrospinal fluid (aCSF) in benchtop assays and in cortical slices in situ. Cortical slice function was quantified by measuring the length, frequency and amplitude of seizure-like event (SLE) activity - in conventionally oxygenated aCSF, C. reinhardtii cultures, unoxygenated and deoxygenated aCSF. The possibility of direct toxic algal effects was investigated by exposing slices to cultures for 5 h. An oxygen level of 25 mg.L was achieved with C. reinhardtii in no-Mg aCSF. Slice SLE function was preserved in C. reinhardtii, without the need for supplemental oxygen. In contrast, functional parameters deteriorated in unoxygenated and deoxygenated aCSF. In the former, there was a 66% reduction in SLE frequency and a 37% reduction in event amplitude. In the latter, SLE activity ceased completely. No toxic algae effects were seen in slices exposed to cultures for 5 h. These results confirm that C. reinhardtii oxygenation of aCSF can sustain cortical network activity - without tissue toxicity for the normal lifespan of an acute cortical slice. This study shows promise for the concept of photosynthesis as a mechanism for providing oxygen to rescue ischaemic avascularised brain tissue.

摘要

缺氧性脑损伤是导致全球生活质量下降的主要原因,但目前尚无有效的治疗方法。人们越来越感兴趣的是将光合作用剂纳入缺氧组织中,作为一种独立于血管灌注的原位供氧机制。迄今为止,这在大脑中尚未得到测试。在台式测定法和皮质切片原位中,测量了莱茵衣藻(Chlamydomonas reinhardtii)微藻培养物在人工脑脊髓液(aCSF)中的产氧能力。通过测量癫痫样事件(SLE)活动的长度、频率和幅度来定量评估皮质切片的功能 - 在常规充氧的 aCSF、C. reinhardtii 培养物、缺氧和脱氧的 aCSF 中。通过将切片暴露于培养物中 5 小时来研究直接的藻类毒性作用的可能性。在无镁 aCSF 中,C. reinhardtii 达到了 25mg.L 的氧水平。在 C. reinhardtii 中,切片的 SLE 功能得以保留,而无需补充氧气。相比之下,在缺氧和脱氧的 aCSF 中,功能参数恶化。在前一种情况下,SLE 频率降低了 66%,事件幅度降低了 37%。在后一种情况下,SLE 活动完全停止。在暴露于培养物 5 小时的切片中未观察到有毒藻类的作用。这些结果证实,C. reinhardtii 对 aCSF 的氧合作用可以维持皮质网络的活性 - 而不会对急性皮质切片的正常寿命造成组织毒性。这项研究为光合作用作为提供氧气以拯救缺血性无血管脑组织的机制提供了希望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验