Suppr超能文献

具有持续产氧功能的光合水凝胶在促进细胞存活和消除厌氧感染中的双重作用。

Dual roles of photosynthetic hydrogel with sustained oxygen generation in promoting cell survival and eradicating anaerobic infection.

作者信息

Kang Jun, Liang Ye, Liu Junqing, Hu Mingxin, Lin Shulan, Zhong Jialin, Wang Chaogang, Zeng Qinglu, Zhang Chengfei

机构信息

Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.

Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.

出版信息

Mater Today Bio. 2024 Aug 10;28:101197. doi: 10.1016/j.mtbio.2024.101197. eCollection 2024 Oct.

Abstract

Tissue engineering offers a promising alternative for oral and maxillofacial tissue defect rehabilitation; however, cells within a sizeable engineered tissue construct after transplantation inevitably face prolonged and severe hypoxic conditions, which may compromise the survivability of the transplanted cells and arouse the concern of anaerobic infection. Microalgae, which can convert carbon dioxide and water into oxygen and glucose through photosynthesis, have been studied as a source of oxygen supply for several biomedical applications, but their promise in orofacial tissue regeneration remains unexplored. Here, we demonstrated that through photosynthetic oxygenation, () supported dental pulp stem cell (DPSC) energy production and survival under hypoxia. We developed a multifunctional photosynthetic hydrogel by embedding DPSCs and encapsulated alginate microspheres (CAMs) within gelatin methacryloyl hydrogel (GelMA) (CAMs@GelMA). This CAMs@GelMA hydrogel can generate a sustainable and sufficient oxygen supply, reverse intracellular hypoxic status, and enhance the metabolic activity and viability of DPSCs. Furthermore, the CAMs@GelMA hydrogel exhibited selective antibacterial activity against oral anaerobes and remarkable antibiofilm effects on multispecies biofilms by disrupting the hypoxic microenvironment and increasing reactive oxygen species generation. Our work presents an innovative photosynthetic strategy for oral tissue engineering and opens new avenues for addressing other hypoxia-related challenges.

摘要

组织工程为口腔颌面部组织缺损修复提供了一种有前景的替代方法;然而,移植后相当大的工程化组织构建物中的细胞不可避免地会面临长期严重的缺氧状况,这可能会损害移植细胞的存活率并引发厌氧感染的担忧。微藻能够通过光合作用将二氧化碳和水转化为氧气和葡萄糖,已被研究作为多种生物医学应用中的氧气供应源,但其在口腔颌面组织再生中的前景仍未得到探索。在此,我们证明了通过光合充氧,()在缺氧条件下支持牙髓干细胞(DPSC)的能量产生和存活。我们通过将DPSC和包封的藻酸盐微球(CAM)嵌入甲基丙烯酰化明胶水凝胶(GelMA)中(CAMs@GelMA)开发了一种多功能光合水凝胶。这种CAMs@GelMA水凝胶可以产生可持续且充足的氧气供应,逆转细胞内缺氧状态,并增强DPSC的代谢活性和活力。此外,CAMs@GelMA水凝胶对口腔厌氧菌表现出选择性抗菌活性,并通过破坏缺氧微环境和增加活性氧的产生对多物种生物膜具有显著的抗生物膜作用。我们的工作为口腔组织工程提出了一种创新的光合策略,并为解决其他与缺氧相关的挑战开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7238/11364899/756b6c767ed7/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验