Shah Hazel J, Lai Betty S, Leroux Audrey J, La Greca Annette M, Colgan Courtney A, Medzhitova Julia
Centers for Disease Control and Prevention, 1600 Clifton Road NE, C-09, Atlanta, GA 30333, USA.
Lynch School of Education and Human Development, Boston College, 316A Campion Hall, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA.
Child Youth Care Forum. 2019 Aug;48(4):563-583. doi: 10.1007/s10566-019-09496-7. Epub 2019 Mar 1.
As access to open data is increasing, researchers gain the opportunity to build integrated datasets and to conduct more powerful statistical analyses. However, using open access data presents challenges for researchers in understanding the data. Visuals allow researchers to address these challenges by facilitating a greater understanding of the information available.
This paper illustrates how visuals can address the challenges that researchers face when using open access data, such as: (1) becoming familiar with the data, (2) identifying patterns and trends within the data, and (3) determining how to integrate data from multiple studies.
This paper uses data from an integrative data analysis study that combined data from prospective studies of children's responses to four natural disasters: Hurricane Andrew, Hurricane Charley, Hurricane Katrina, and Hurricane Ike. The integrated dataset assessed hurricane exposure, posttraumatic stress symptoms, anxiety, social support, and life events among 1707 participants (53.61% female). The children's ages ranged from 7 to 16 years ( = 9.61, = 1.60).
Visuals serve as an effective method for understanding new and unfamiliar datasets.
In response to the growth of open access data, researchers must develop the skills necessary to create informative visuals. Most research-based graduate programs do not require programming-based courses for graduation. More opportunities for training in programming languages need to be offered so that future researchers are better prepared to understand new data. This paper discusses implications of current graduate course requirements and standard journal practices on how researchers visualize data.
随着开放数据获取途径的增加,研究人员有机会构建综合数据集并进行更强大的统计分析。然而,使用开放获取数据给研究人员理解数据带来了挑战。可视化通过促进对现有信息的更好理解,使研究人员能够应对这些挑战。
本文阐述了可视化如何应对研究人员在使用开放获取数据时面临的挑战,例如:(1)熟悉数据;(2)识别数据中的模式和趋势;(3)确定如何整合来自多项研究的数据。
本文使用了一项综合数据分析研究的数据,该研究整合了关于儿童对四次自然灾害(安德鲁飓风、查理飓风、卡特里娜飓风和艾克飓风)反应的前瞻性研究数据。综合数据集评估了1707名参与者(53.61%为女性)的飓风暴露情况、创伤后应激症状、焦虑、社会支持和生活事件。儿童年龄在7至16岁之间(平均年龄 = 9.61,标准差 = 1.60)。
可视化是理解新的和不熟悉数据集的有效方法。
为应对开放获取数据的增长,研究人员必须培养创建信息丰富的可视化所需的技能。大多数基于研究的研究生项目毕业时并不要求开设基于编程的课程。需要提供更多编程语言培训机会,以便未来的研究人员能更好地准备理解新数据。本文讨论了当前研究生课程要求和标准期刊实践对研究人员数据可视化方式的影响。