Department of Clinical Medicine, Center for Functionally Integrative Neuroscience, Aarhus University, Aarhus 8000, Denmark.
Department of Psychiatry, University of Oxford, Oxford OX37JX, UK.
Cereb Cortex. 2021 Oct 22;31(12):5664-5675. doi: 10.1093/cercor/bhab189.
Brain decoding can predict visual perception from non-invasive electrophysiological data by combining information across multiple channels. However, decoding methods typically conflate the composite and distributed neural processes underlying perception that are together present in the signal, making it unclear what specific aspects of the neural computations involved in perception are reflected in this type of macroscale data. Using MEG data recorded while participants viewed a large number of naturalistic images, we analytically decomposed the brain signal into its oscillatory and non-oscillatory components, and used this decomposition to show that there are at least three dissociable stimulus-specific aspects to the brain data: a slow, non-oscillatory component, reflecting the temporally stable aspect of the stimulus representation; a global phase shift of the oscillation, reflecting the overall speed of processing of specific stimuli; and differential patterns of phase across channels, likely reflecting stimulus-specific computations. Further, we show that common cognitive interpretations of decoding analysis, in particular about how representations generalize across time, can benefit from acknowledging the multicomponent nature of the signal in the study of perception.
脑解码可以通过整合多个通道的信息,从非侵入性的电生理数据中预测视觉感知。然而,解码方法通常将感知的综合和分布式神经过程混为一谈,这些过程共同存在于信号中,使得不清楚在这种宏观数据中反映了感知过程中涉及的哪些特定方面的神经计算。使用 MEG 数据记录参与者观看大量自然图像时的大脑信号,我们对大脑信号进行了分析性分解,将其分解为振荡和非振荡成分,并使用这种分解来表明,大脑数据至少有三个可分离的刺激特异性方面:一个缓慢的、非振荡的成分,反映了刺激表示的时间稳定方面;振荡的全局相位移动,反映了特定刺激的整体处理速度;以及通道之间的相位差模式,可能反映了刺激特异性计算。此外,我们表明,对解码分析的常见认知解释,特别是关于表示如何跨时间概括的解释,可以通过承认信号的多分量性质来受益于感知研究。