Department of Medical Physics, Wayne State University, Detroit, MI, United States of America.
Beaumont Artificial Intelligence Research Laboratory, Beaumont Health, Royal Oak, MI, United States of America.
Phys Med Biol. 2021 Aug 23;66(17). doi: 10.1088/1361-6560/ac16ec.
To develop and evaluate the performance of a deep learning model to generate synthetic pulmonary perfusion images from clinical 4DCT images for patients undergoing radiotherapy for lung cancer.. A clinical data set of 58 pre- and post-radiotherapyTc-labeled MAA-SPECT perfusion studies (32 patients) each with contemporaneous 4DCT studies was collected. Using the inhale and exhale phases of the 4DCT, a 3D-residual network was trained to create synthetic perfusion images utilizing the MAA-SPECT as ground truth. The training process was repeated for a 50-imaging study, five-fold validation with twenty model instances trained per fold. The highest performing model instance from each fold was selected for inference upon the eight-study test set. A manual lung segmentation was used to compute correlation metrics constrained to the voxels within the lungs. From the pre-treatment test cases ( = 5), 50th percentile contours of well-perfused lung were generated from both the clinical and synthetic perfusion images and the agreement was quantified.. Across the hold-out test set, our deep learning model predicted perfusion with a Spearman correlation coefficient of 0.70 (IQR: 0.61-0.76) and a Pearson correlation coefficient of 0.66 (IQR: 0.49-0.73). The agreement of the functional avoidance contour pairs was Dice of 0.803 (IQR: 0.750-0.810) and average surface distance of 5.92 mm (IQR: 5.68-7.55).. We demonstrate that from 4DCT alone, a deep learning model can generate synthetic perfusion images with potential application in functional avoidance treatment planning.
为了开发和评估一种深度学习模型的性能,该模型能够从肺癌放疗患者的临床 4DCT 图像生成合成的肺灌注图像。收集了一组 58 例接受放疗前后 Tc-标记 MAA-SPECT 灌注研究(32 例患者)的临床数据集,每个患者都有同期的 4DCT 研究。利用 4DCT 的吸气和呼气相,使用 3D 残差网络来创建利用 MAA-SPECT 作为真实数据的合成灌注图像。训练过程重复了 50 次影像学研究,每次验证使用 5 个模型实例进行五重验证。从每个折叠中选择性能最高的模型实例,对 8 个研究测试集进行推断。使用手动肺分割来计算受限在肺内体素的相关指标。从预处理测试病例(n=5)中,从临床和合成灌注图像生成灌注良好的肺的第 50 个百分位数轮廓,并量化其一致性。在整个外部测试集上,我们的深度学习模型预测灌注的斯皮尔曼相关系数为 0.70(IQR:0.61-0.76),皮尔逊相关系数为 0.66(IQR:0.49-0.73)。功能回避轮廓对的一致性为 Dice 为 0.803(IQR:0.750-0.810),平均表面距离为 5.92 毫米(IQR:5.68-7.55)。我们证明,仅从 4DCT 中,深度学习模型可以生成具有潜在应用于功能回避治疗计划的合成灌注图像。