Suppr超能文献

使用基于深度学习的模型从临床4D-CBCT中获取肺通气图像。

Deriving Pulmonary Ventilation Images From Clinical 4D-CBCT Using a Deep Learning-Based Model.

作者信息

Liu Zhiqiang, Tian Yuan, Miao Junjie, Men Kuo, Wang Wenqing, Wang Xin, Zhang Tao, Bi Nan, Dai Jianrong

机构信息

National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Radiation Oncology, Beijing, China.

出版信息

Front Oncol. 2022 May 2;12:889266. doi: 10.3389/fonc.2022.889266. eCollection 2022.

Abstract

PURPOSE

The current algorithms for measuring ventilation images from 4D cone-beam computed tomography (CBCT) are affected by the accuracy of deformable image registration (DIR). This study proposes a new deep learning (DL) method that does not rely on DIR to derive ventilation images from 4D-CBCT (CBCT-VI), which was validated with the gold-standard single-photon emission-computed tomography ventilation image (SPECT-VI).

MATERIALS AND METHODS

This study consists of 4D-CBCT and 99mTc-Technegas SPECT/CT scans of 28 esophagus or lung cancer patients. The scans were rigidly registered for each patient. Using these data, CBCT-VI was derived using a deep learning-based model. Two types of model input data are studied, namely, (a) 10 phases of 4D-CBCT and (b) two phases of peak-exhalation and peak-inhalation of 4D-CBCT. A sevenfold cross-validation was applied to train and evaluate the model. The DIR-dependent methods (density-change-based and Jacobian-based methods) were used to measure the CBCT-VIs for comparison. The correlation was calculated between each CBCT-VI and SPECT-VI using voxel-wise Spearman's correlation. The ventilation images were divided into high, medium, and low functional lung regions. The similarity of different functional lung regions between SPECT-VI and each CBCT-VI was evaluated using the dice similarity coefficient (DSC). One-factor ANONA model was used for statistical analysis of the averaged DSC for the different methods of generating ventilation images.

RESULTS

The correlation values were 0.02 ± 0.10, 0.02 ± 0.09, and 0.65 ± 0.13/0.65 ± 0.15, and the averaged DSC values were 0.34 ± 0.04, 0.34 ± 0.03, and 0.59 ± 0.08/0.58 ± 0.09 for the density change, Jacobian, and deep learning methods, respectively. The strongest correlation and the highest similarity with SPECT-VI were observed for the deep learning method compared to the density change and Jacobian methods.

CONCLUSION

The results showed that the deep learning method improved the accuracy of correlation and similarity significantly, and the derived CBCT-VIs have the potential to monitor the lung function dynamic changes during radiotherapy.

摘要

目的

当前用于从4D锥束计算机断层扫描(CBCT)测量通气图像的算法受可变形图像配准(DIR)准确性的影响。本研究提出一种新的深度学习(DL)方法,该方法不依赖DIR从4D-CBCT中获取通气图像(CBCT-VI),并使用金标准单光子发射计算机断层扫描通气图像(SPECT-VI)进行了验证。

材料与方法

本研究包括28例食管癌或肺癌患者的4D-CBCT和99mTc-锝气体SPECT/CT扫描。对每位患者的扫描进行了刚性配准。利用这些数据,使用基于深度学习的模型获取CBCT-VI。研究了两种类型的模型输入数据,即(a)4D-CBCT的10个时相和(b)4D-CBCT的呼气峰值和吸气峰值两个时相。采用七折交叉验证来训练和评估模型。使用依赖DIR的方法(基于密度变化和基于雅可比行列式的方法)测量CBCT-VI以作比较。使用体素级斯皮尔曼相关性计算每个CBCT-VI与SPECT-VI之间的相关性。将通气图像分为高、中、低功能肺区。使用骰子相似系数(DSC)评估SPECT-VI与每个CBCT-VI之间不同功能肺区的相似性。使用单因素方差分析模型对不同通气图像生成方法的平均DSC进行统计分析。

结果

密度变化法、雅可比行列式法和深度学习法的相关值分别为0.02±0.10、0.02±0.09和0.65±0.13/0.65±0.15,平均DSC值分别为0.34±0.04、0.34±0.03和0.59±0.08/0.58±0.09。与密度变化法和雅可比行列式法相比,深度学习法与SPECT-VI的相关性最强,相似性最高。

结论

结果表明,深度学习方法显著提高了相关性和相似性的准确性,所获取的CBCT-VI有潜力在放疗期间监测肺功能的动态变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4360/9109610/c2859f81493e/fonc-12-889266-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验