文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

METAMVGL:一种基于多视图图的宏基因组序列拼接 bin 算法,通过整合组装图和配对末端图。

METAMVGL: a multi-view graph-based metagenomic contig binning algorithm by integrating assembly and paired-end graphs.

机构信息

Department of Computer Science, Hong Kong Baptist University, Hong Kong, SAR, China.

出版信息

BMC Bioinformatics. 2021 Jul 22;22(Suppl 10):378. doi: 10.1186/s12859-021-04284-4.


DOI:10.1186/s12859-021-04284-4
PMID:34294039
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8296540/
Abstract

BACKGROUND: Due to the complexity of microbial communities, de novo assembly on next generation sequencing data is commonly unable to produce complete microbial genomes. Metagenome assembly binning becomes an essential step that could group the fragmented contigs into clusters to represent microbial genomes based on contigs' nucleotide compositions and read depths. These features work well on the long contigs, but are not stable for the short ones. Contigs can be linked by sequence overlap (assembly graph) or by the paired-end reads aligned to them (PE graph), where the linked contigs have high chance to be derived from the same clusters. RESULTS: We developed METAMVGL, a multi-view graph-based metagenomic contig binning algorithm by integrating both assembly and PE graphs. It could strikingly rescue the short contigs and correct the binning errors from dead ends. METAMVGL learns the two graphs' weights automatically and predicts the contig labels in a uniform multi-view label propagation framework. In experiments, we observed METAMVGL made use of significantly more high-confidence edges from the combined graph and linked dead ends to the main graph. It also outperformed many state-of-the-art contig binning algorithms, including MaxBin2, MetaBAT2, MyCC, CONCOCT, SolidBin and GraphBin on the metagenomic sequencing data from simulation, two mock communities and Sharon infant fecal samples. CONCLUSIONS: Our findings demonstrate METAMVGL outstandingly improves the short contig binning and outperforms the other existing contig binning tools on the metagenomic sequencing data from simulation, mock communities and infant fecal samples.

摘要

背景:由于微生物群落的复杂性,新一代测序数据的从头组装通常无法产生完整的微生物基因组。宏基因组组装分箱成为一个必要的步骤,可以根据序列的核苷酸组成和读取深度将碎片化的 contigs 聚类为代表微生物基因组的簇。这些特征在长 contigs 上效果很好,但在短 contigs 上不稳定。contigs 可以通过序列重叠(组装图)或与其对齐的配对末端读取(PE 图)连接,其中连接的 contigs 很有可能来自相同的簇。

结果:我们开发了 METAMVGL,这是一种基于多视图图的宏基因组 contig 分箱算法,它集成了组装图和 PE 图。它可以显著挽救短 contigs 并纠正来自死胡同的分箱错误。METAMVGL 自动学习两个图的权重,并在统一的多视图标签传播框架中预测 contig 标签。在实验中,我们观察到 METAMVGL 利用了来自组合图的更多高置信度边,并将死胡同与主图连接起来。它在模拟、两个模拟群落和 Sharon 婴儿粪便样本的宏基因组测序数据上的性能也优于许多最新的 contig 分箱算法,包括 MaxBin2、MetaBAT2、MyCC、CONCOCT、SolidBin 和 GraphBin。

结论:我们的研究结果表明,METAMVGL 显著提高了短 contigs 的分箱效果,在模拟、模拟群落和婴儿粪便样本的宏基因组测序数据上的性能优于其他现有的 contig 分箱工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f766/8296540/e42ac238fcce/12859_2021_4284_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f766/8296540/1d88db45612a/12859_2021_4284_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f766/8296540/d967a113f9dc/12859_2021_4284_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f766/8296540/a39f468484e8/12859_2021_4284_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f766/8296540/e42ac238fcce/12859_2021_4284_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f766/8296540/1d88db45612a/12859_2021_4284_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f766/8296540/d967a113f9dc/12859_2021_4284_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f766/8296540/a39f468484e8/12859_2021_4284_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f766/8296540/e42ac238fcce/12859_2021_4284_Fig4_HTML.jpg

相似文献

[1]
METAMVGL: a multi-view graph-based metagenomic contig binning algorithm by integrating assembly and paired-end graphs.

BMC Bioinformatics. 2021-7-22

[2]
GraphBin: refined binning of metagenomic contigs using assembly graphs.

Bioinformatics. 2020-6-1

[3]
Accurate Binning of Metagenomic Contigs Using Composition, Coverage, and Assembly Graphs.

J Comput Biol. 2022-12

[4]
MetaCluster-TA: taxonomic annotation for metagenomic data based on assembly-assisted binning.

BMC Genomics. 2014-1-24

[5]
Improving metagenomic binning results with overlapped bins using assembly graphs.

Algorithms Mol Biol. 2021-5-4

[6]
Binnacle: Using Scaffolds to Improve the Contiguity and Quality of Metagenomic Bins.

Front Microbiol. 2021-2-24

[7]
SolidBin: improving metagenome binning with semi-supervised normalized cut.

Bioinformatics. 2019-11-1

[8]
AFITbin: a metagenomic contig binning method using aggregate l-mer frequency based on initial and terminal nucleotides.

BMC Bioinformatics. 2024-7-16

[9]
CoMet: a workflow using contig coverage and composition for binning a metagenomic sample with high precision.

BMC Bioinformatics. 2017-12-28

[10]
Improving contig binning of metagenomic data using [Formula: see text] oligonucleotide frequency dissimilarity.

BMC Bioinformatics. 2017-9-20

引用本文的文献

[1]
Environmental community transcriptomics: strategies and struggles.

Brief Funct Genomics. 2025-1-15

[2]
Solving genomic puzzles: computational methods for metagenomic binning.

Brief Bioinform. 2024-7-25

[3]
Applications of de Bruijn graphs in microbiome research.

Imeta. 2022-3-1

[4]
A toolbox of machine learning software to support microbiome analysis.

Front Microbiol. 2023-11-22

[5]
Unitig level assembly graph based metagenome-assembled genome refiner (UGMAGrefiner): A tool to increase completeness and resolution of metagenome-assembled genomes.

Comput Struct Biotechnol J. 2023-3-21

[6]
Constructing metagenome-assembled genomes for almost all components in a real bacterial consortium for binning benchmarking.

BMC Genomics. 2022-11-10

[7]
BinSPreader: Refine binning results for fuller MAG reconstruction.

iScience. 2022-7-19

[8]
A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data.

Comput Struct Biotechnol J. 2021-11-23

本文引用的文献

[1]
A unified catalog of 204,938 reference genomes from the human gut microbiome.

Nat Biotechnol. 2021-1

[2]
GraphBin: refined binning of metagenomic contigs using assembly graphs.

Bioinformatics. 2020-6-1

[3]
Improved metagenomic analysis with Kraken 2.

Genome Biol. 2019-11-28

[4]
Shotgun metagenome data of a defined mock community using Oxford Nanopore, PacBio and Illumina technologies.

Sci Data. 2019-11-26

[5]
A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research.

Nat Med. 2019-9-2

[6]
MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies.

PeerJ. 2019-7-26

[7]
SolidBin: improving metagenome binning with semi-supervised normalized cut.

Bioinformatics. 2019-11-1

[8]
New insights from uncultivated genomes of the global human gut microbiome.

Nature. 2019-3-13

[9]
A new genomic blueprint of the human gut microbiota.

Nature. 2019-2-11

[10]
CAMISIM: simulating metagenomes and microbial communities.

Microbiome. 2019-2-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索