Department of Computer Science, Hong Kong Baptist University, Hong Kong, SAR, China.
BMC Bioinformatics. 2021 Jul 22;22(Suppl 10):378. doi: 10.1186/s12859-021-04284-4.
BACKGROUND: Due to the complexity of microbial communities, de novo assembly on next generation sequencing data is commonly unable to produce complete microbial genomes. Metagenome assembly binning becomes an essential step that could group the fragmented contigs into clusters to represent microbial genomes based on contigs' nucleotide compositions and read depths. These features work well on the long contigs, but are not stable for the short ones. Contigs can be linked by sequence overlap (assembly graph) or by the paired-end reads aligned to them (PE graph), where the linked contigs have high chance to be derived from the same clusters. RESULTS: We developed METAMVGL, a multi-view graph-based metagenomic contig binning algorithm by integrating both assembly and PE graphs. It could strikingly rescue the short contigs and correct the binning errors from dead ends. METAMVGL learns the two graphs' weights automatically and predicts the contig labels in a uniform multi-view label propagation framework. In experiments, we observed METAMVGL made use of significantly more high-confidence edges from the combined graph and linked dead ends to the main graph. It also outperformed many state-of-the-art contig binning algorithms, including MaxBin2, MetaBAT2, MyCC, CONCOCT, SolidBin and GraphBin on the metagenomic sequencing data from simulation, two mock communities and Sharon infant fecal samples. CONCLUSIONS: Our findings demonstrate METAMVGL outstandingly improves the short contig binning and outperforms the other existing contig binning tools on the metagenomic sequencing data from simulation, mock communities and infant fecal samples.
背景:由于微生物群落的复杂性,新一代测序数据的从头组装通常无法产生完整的微生物基因组。宏基因组组装分箱成为一个必要的步骤,可以根据序列的核苷酸组成和读取深度将碎片化的 contigs 聚类为代表微生物基因组的簇。这些特征在长 contigs 上效果很好,但在短 contigs 上不稳定。contigs 可以通过序列重叠(组装图)或与其对齐的配对末端读取(PE 图)连接,其中连接的 contigs 很有可能来自相同的簇。
结果:我们开发了 METAMVGL,这是一种基于多视图图的宏基因组 contig 分箱算法,它集成了组装图和 PE 图。它可以显著挽救短 contigs 并纠正来自死胡同的分箱错误。METAMVGL 自动学习两个图的权重,并在统一的多视图标签传播框架中预测 contig 标签。在实验中,我们观察到 METAMVGL 利用了来自组合图的更多高置信度边,并将死胡同与主图连接起来。它在模拟、两个模拟群落和 Sharon 婴儿粪便样本的宏基因组测序数据上的性能也优于许多最新的 contig 分箱算法,包括 MaxBin2、MetaBAT2、MyCC、CONCOCT、SolidBin 和 GraphBin。
结论:我们的研究结果表明,METAMVGL 显著提高了短 contigs 的分箱效果,在模拟、模拟群落和婴儿粪便样本的宏基因组测序数据上的性能优于其他现有的 contig 分箱工具。
Bioinformatics. 2020-6-1
Algorithms Mol Biol. 2021-5-4
Front Microbiol. 2021-2-24
Bioinformatics. 2019-11-1
BMC Bioinformatics. 2017-12-28
BMC Bioinformatics. 2017-9-20
Brief Funct Genomics. 2025-1-15
Brief Bioinform. 2024-7-25
Imeta. 2022-3-1
Front Microbiol. 2023-11-22
iScience. 2022-7-19
Comput Struct Biotechnol J. 2021-11-23
Nat Biotechnol. 2021-1
Bioinformatics. 2020-6-1
Genome Biol. 2019-11-28
Bioinformatics. 2019-11-1
Nature. 2019-2-11
Microbiome. 2019-2-8