Suppr超能文献

网络自回归模型的特征筛选

Feature Screening for Network Autoregression Model.

作者信息

Huang Danyang, Zhu Xuening, Li Runze, Wang Hansheng

机构信息

Renmin University of China.

Fudan University.

出版信息

Stat Sin. 2021;31:1239-1259. doi: 10.5705/ss.202018.0400.

Abstract

Network analysis has drawn great attention in recent years. It is applied to a wide range disciplines. These include but are not limited to social science, finance and genetics. It is typical that one collects abundant covariates along the response variable in practice. Since the network structure makes the responses at different nodes no longer independent, existing screening methods may not perform well for network data. We propose a network-based sure independence screening (NW-SIS) method. This approach explicitly takes the network structure into consideration. The strong screening consistency property of the NW-SIS is rigorously established. We further investigated the estimation of the network effect and establish the -consistency of the estimator. The finite sample performance of the proposed method is assessed by simulation study and illustrated by an empirical analysis of a dataset from Chinese stock market.

摘要

近年来,网络分析备受关注。它被应用于广泛的学科领域,包括但不限于社会科学、金融和遗传学。在实际应用中,通常会沿着响应变量收集大量协变量。由于网络结构使得不同节点的响应不再独立,现有的筛选方法可能不适用于网络数据。我们提出了一种基于网络的确定性独立筛选(NW-SIS)方法。该方法明确考虑了网络结构。严格建立了NW-SIS的强筛选一致性性质。我们进一步研究了网络效应的估计,并建立了估计量的 - 一致性。通过模拟研究评估了所提方法的有限样本性能,并通过对中国股票市场数据集的实证分析进行了说明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd46/8290873/7aee3d6f63a9/nihms-1614216-f0001.jpg

相似文献

1
2
Portal Nodes Screening for Large Scale Social Networks.面向大规模社交网络的门户节点筛选
J Econom. 2019 Apr;209(2):145-157. doi: 10.1016/j.jeconom.2018.12.021. Epub 2019 Jan 5.
3
Feature Screening via Distance Correlation Learning.通过距离相关学习进行特征筛选
J Am Stat Assoc. 2012 Jul 1;107(499):1129-1139. doi: 10.1080/01621459.2012.695654.
10

本文引用的文献

4
Feature Screening via Distance Correlation Learning.通过距离相关学习进行特征筛选
J Am Stat Assoc. 2012 Jul 1;107(499):1129-1139. doi: 10.1080/01621459.2012.695654.
10
HIGH DIMENSIONAL VARIABLE SELECTION.高维变量选择
Ann Stat. 2009 Jan 1;37(5A):2178-2201. doi: 10.1214/08-aos646.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验