Wang Lan, Kim Yongdai, Li Runze
S chool of S tatistics U niversity of M innesota M inneapolis , MN 55455, USA
D epartment of S tatistics S eoul N ational U niversity S eoul , K orea
Ann Stat. 2013 Oct 1;41(5):2505-2536. doi: 10.1214/13-AOS1159.
We investigate high-dimensional non-convex penalized regression, where the number of covariates may grow at an exponential rate. Although recent asymptotic theory established that there exists a local minimum possessing the oracle property under general conditions, it is still largely an open problem how to identify the oracle estimator among potentially multiple local minima. There are two main obstacles: (1) due to the presence of multiple minima, the solution path is nonunique and is not guaranteed to contain the oracle estimator; (2) even if a solution path is known to contain the oracle estimator, the optimal tuning parameter depends on many unknown factors and is hard to estimate. To address these two challenging issues, we first prove that an easy-to-calculate calibrated CCCP algorithm produces a consistent solution path which contains the oracle estimator with probability approaching one. Furthermore, we propose a high-dimensional BIC criterion and show that it can be applied to the solution path to select the optimal tuning parameter which asymptotically identifies the oracle estimator. The theory for a general class of non-convex penalties in the ultra-high dimensional setup is established when the random errors follow the sub-Gaussian distribution. Monte Carlo studies confirm that the calibrated CCCP algorithm combined with the proposed high-dimensional BIC has desirable performance in identifying the underlying sparsity pattern for high-dimensional data analysis.
我们研究高维非凸惩罚回归,其中协变量的数量可能以指数速率增长。尽管最近的渐近理论表明,在一般条件下存在具有神谕性质的局部最小值,但在潜在的多个局部最小值中如何识别神谕估计量在很大程度上仍然是一个开放问题。存在两个主要障碍:(1)由于存在多个最小值,解路径不唯一,并且不能保证包含神谕估计量;(2)即使已知一条解路径包含神谕估计量,最优调谐参数也取决于许多未知因素,并且很难估计。为了解决这两个具有挑战性的问题,我们首先证明一种易于计算的校准CCCP算法会产生一条一致的解路径,该路径以概率趋近于1的方式包含神谕估计量。此外,我们提出了一种高维BIC准则,并表明它可以应用于解路径以选择最优调谐参数,该参数渐近地识别神谕估计量。当随机误差服从次高斯分布时,在超高维设置下建立了一类一般非凸惩罚的理论。蒙特卡罗研究证实,校准的CCCP算法与所提出的高维BIC相结合,在识别高维数据分析的潜在稀疏模式方面具有理想的性能。