Suppr超能文献

超高维情形下非凸惩罚回归的校准

CALIBRATING NON-CONVEX PENALIZED REGRESSION IN ULTRA-HIGH DIMENSION.

作者信息

Wang Lan, Kim Yongdai, Li Runze

机构信息

S chool of S tatistics U niversity of M innesota M inneapolis , MN 55455, USA

D epartment of S tatistics S eoul N ational U niversity S eoul , K orea

出版信息

Ann Stat. 2013 Oct 1;41(5):2505-2536. doi: 10.1214/13-AOS1159.

Abstract

We investigate high-dimensional non-convex penalized regression, where the number of covariates may grow at an exponential rate. Although recent asymptotic theory established that there exists a local minimum possessing the oracle property under general conditions, it is still largely an open problem how to identify the oracle estimator among potentially multiple local minima. There are two main obstacles: (1) due to the presence of multiple minima, the solution path is nonunique and is not guaranteed to contain the oracle estimator; (2) even if a solution path is known to contain the oracle estimator, the optimal tuning parameter depends on many unknown factors and is hard to estimate. To address these two challenging issues, we first prove that an easy-to-calculate calibrated CCCP algorithm produces a consistent solution path which contains the oracle estimator with probability approaching one. Furthermore, we propose a high-dimensional BIC criterion and show that it can be applied to the solution path to select the optimal tuning parameter which asymptotically identifies the oracle estimator. The theory for a general class of non-convex penalties in the ultra-high dimensional setup is established when the random errors follow the sub-Gaussian distribution. Monte Carlo studies confirm that the calibrated CCCP algorithm combined with the proposed high-dimensional BIC has desirable performance in identifying the underlying sparsity pattern for high-dimensional data analysis.

摘要

我们研究高维非凸惩罚回归,其中协变量的数量可能以指数速率增长。尽管最近的渐近理论表明,在一般条件下存在具有神谕性质的局部最小值,但在潜在的多个局部最小值中如何识别神谕估计量在很大程度上仍然是一个开放问题。存在两个主要障碍:(1)由于存在多个最小值,解路径不唯一,并且不能保证包含神谕估计量;(2)即使已知一条解路径包含神谕估计量,最优调谐参数也取决于许多未知因素,并且很难估计。为了解决这两个具有挑战性的问题,我们首先证明一种易于计算的校准CCCP算法会产生一条一致的解路径,该路径以概率趋近于1的方式包含神谕估计量。此外,我们提出了一种高维BIC准则,并表明它可以应用于解路径以选择最优调谐参数,该参数渐近地识别神谕估计量。当随机误差服从次高斯分布时,在超高维设置下建立了一类一般非凸惩罚的理论。蒙特卡罗研究证实,校准的CCCP算法与所提出的高维BIC相结合,在识别高维数据分析的潜在稀疏模式方面具有理想的性能。

相似文献

2
Variable Selection for Support Vector Machines in Moderately High Dimensions.适度高维下支持向量机的变量选择
J R Stat Soc Series B Stat Methodol. 2016 Jan;78(1):53-76. doi: 10.1111/rssb.12100. Epub 2015 Jan 5.
4
Broken adaptive ridge regression and its asymptotic properties.折断自适应岭回归及其渐近性质。
J Multivar Anal. 2018 Nov;168:334-351. doi: 10.1016/j.jmva.2018.08.007. Epub 2018 Aug 23.
5
Hard thresholding regression.硬阈值回归
Scand Stat Theory Appl. 2019 Mar;46(1):314-328. doi: 10.1111/sjos.12353. Epub 2018 Sep 24.
10
Quantile Regression for Analyzing Heterogeneity in Ultra-high Dimension.用于分析超高维异质性的分位数回归
J Am Stat Assoc. 2012 Mar 1;107(497):214-222. doi: 10.1080/01621459.2012.656014. Epub 2012 Jun 11.

引用本文的文献

1
Feature-splitting Algorithms for Ultrahigh Dimensional Quantile Regression.超高维分位数回归的特征分割算法
J Econom. 2025 May;249(Pt A). doi: 10.1016/j.jeconom.2023.01.028. Epub 2023 Mar 24.
4
Projection Test for Mean Vector in High Dimensions.高维均值向量的投影检验
J Am Stat Assoc. 2024;119(545):744-756. doi: 10.1080/01621459.2022.2142592. Epub 2022 Dec 12.
8
Scalable network estimation with penalty.带惩罚项的可扩展网络估计
Stat Anal Data Min. 2021 Feb;14(1):18-30. doi: 10.1002/sam.11483. Epub 2020 Oct 21.
9
Nonbifurcating Phylogenetic Tree Inference via the Adaptive LASSO.基于自适应套索法的非二叉系统发育树推断
J Am Stat Assoc. 2021;116(534):858-873. doi: 10.1080/01621459.2020.1778481. Epub 2020 Jul 20.
10

本文引用的文献

1
: Coordinate Descent With Nonconvex Penalties.带非凸惩罚项的坐标下降法
J Am Stat Assoc. 2011;106(495):1125-1138. doi: 10.1198/jasa.2011.tm09738.
2
Non-Concave Penalized Likelihood with NP-Dimensionality.具有NP维数的非凹惩罚似然法
IEEE Trans Inf Theory. 2011 Aug;57(8):5467-5484. doi: 10.1109/TIT.2011.2158486.
7
Variable Selection using MM Algorithms.使用MM算法进行变量选择
Ann Stat. 2005;33(4):1617-1642. doi: 10.1214/009053605000000200.
9
10
The concave-convex procedure.凹凸操作法
Neural Comput. 2003 Apr;15(4):915-36. doi: 10.1162/08997660360581958.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验