Suppr超能文献

基于肝细胞癌(HCC)代谢基因组景观分析的预后指数鉴定

Identification of a Prognostic Index Based on a Metabolic-Genomic Landscape Analysis of Hepatocellular Carcinoma (HCC).

作者信息

Yang Xin, Liu Qiong, Zou Juan, Li Yu-Kun, Xie Xia

机构信息

Department of Infectious Diseases, The First Affiliated Hospital of University of South China, Heng Yang, Hunan, 421000, People's Republic of China.

Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan, 421001, People's Republic of China.

出版信息

Cancer Manag Res. 2021 Jul 15;13:5683-5698. doi: 10.2147/CMAR.S316588. eCollection 2021.

Abstract

BACKGROUND

Metabolic disorders have attracted increasing attention from scientists who conduct research on various tumours, especially hepatocellular carcinoma (HCC). The purpose of this study was to assess the prognostic significance of metabolism in HCC.

METHODS

The expression profiles of metabolism-related genes (MRGs) of 349 surviving HCC patients were extracted from The Cancer Genome Atlas (TCGA) database. Subsequently, a series of biomedical computational algorithms were used to identify a seven-MRG signature as a prognostic model. GSEA indicated the function and pathway enrichment of these MRGs. Then, drug sensitivity analysis was used to identify the hub gene, which was tested using IHC staining.

RESULTS

A total of 420 differential MRGs and 116 differentially expressed transcription factors (TFs) were identified in HCC patients based on data from the TCGA database. The GO and KEGG enrichment analyses indicated that metabolic disturbance might be involved in the development of HCC. LASSO regression analysis was used to construct a seven-MRG signature (DHDH, ENO1, G6PD, LPCAT1, PDE6D, PIGU and PPAT) that could predict the prognosis of HCC patients. GSEA revealed the functional and pathway enrichment of these seven MRGs. Then, drug sensitivity analysis indicated that G6PD might play a key role in the prognosis of HCC by promoting chemoresistance. Finally, we used IHC staining to demonstrate the relationship between G6PD expression levels and clinical parameters in HCC patients.

CONCLUSION

The results of this study provide a potential method for predicting the prognosis of HCC patients and avenues for further studies of HCC metabolism. Moreover, the function of G6PD may play a key role in the development and progression of HCC.

摘要

背景

代谢紊乱已引起从事各种肿瘤研究的科学家,尤其是肝细胞癌(HCC)研究的科学家越来越多的关注。本研究的目的是评估代谢在肝癌中的预后意义。

方法

从癌症基因组图谱(TCGA)数据库中提取349例存活肝癌患者的代谢相关基因(MRG)表达谱。随后,使用一系列生物医学计算算法来识别一个由七个MRG组成的特征作为预后模型进行。基因集富集分析(GSEA)表明了这些MRG的功能和通路富集情况进行。然后,通过药物敏感性分析来识别枢纽基因,并使用免疫组化染色进行检测。

结果

基于TCGA数据库的数据,在肝癌患者中总共鉴定出420个差异MRG和116个差异表达的转录因子(TF)。基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析表明,代谢紊乱可能参与了肝癌的发生发展。使用套索回归分析构建了一个可以预测肝癌患者预后情况的由七个MRG组成的特征(DHDH、ENO1、G6PD、LPCAT1、PDE6D、PIGU和PPAT)。GSEA揭示了这七个MRG的功能和通路富集情况。然后,药物敏感性分析表明,G6PD可能通过促进化疗耐药性在肝癌预后中起关键作用。最后,我们使用免疫组化染色来证明G6PD表达水平与肝癌患者临床参数之间的关系。

结论

本研究结果为预测肝癌患者的预后提供了一种潜在方法,并为肝癌代谢的进一步研究提供了途径。此外,G6PD的功能可能在肝癌的发生和发展中起关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b767/8290353/7d6254fc66c1/CMAR-13-5683-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验